August 2019

Environmental Impact Assessment Report (EIAR)

Clongriffin EIAR Appendices:
Proposed Mixed Use Development
Lands at Clongriffin, Dublin 13

Applicant: Gerard Gannon Properties

downey

Appendix 3.1

Clongriffin Planning Applications Planning \& Development Context

Reg. Ref.	Date of Application	Description	$\begin{gathered} \text { Granted } \\ \mathrm{Y} / \mathrm{N} \end{gathered}$	Grant Date	Applicant
0169/97	03/02/1997	Erection of a single storey prefabricated building for school use to the rear.	Y	20/05/1997	County Dublin V.E.C.
1025/97	01/05/1997	Physical Education Hall with viewing gallery and ancillary accommodation (two storey) at rear.	Y	12/08/1997	Co Dublin VEC
2404/97	19/09/1997	1 dwelling	Y	08/06/1998	Norman Church
2807/97	06/11/1997	New function room to front and temporary entrance.	Y	17/02/1998	The Management Committee
0558/99	26/02/1999	To install on the roof antennae for mobile telephony together with a support pole, a container at ground level and ancillary equipment, as part of a digital mobile telecommunications network.	Y	03/06/1999	Meteor Mobile Communications
2683/99	20/08/1999	Pre-fabricated building 200 sq.m. to be erected at left rear of Trinity Sports \& Leisure Centre for childcare facility.	Y	06/01/2000	Lorraine Corr \& Michelle Murphy
0949/00	03/04/2000	To construct two line termination masts under The Grange - Collinstown 38kv overhead line.	Y	29/06/2000	ESB
1641/00	26/05/2000	Two storey extension to rear, to include a new function room of approx 544 sq m , site works and additional car parking spaces on site.	Y	04/12/2000	Trinity Sports \& Leisure Club
0311/01	09/02/2001	Erection of a second vehicular entrance located 100 m east of the existing entrance.	Y	16/05/2001	Dublin Vocational Education Committee
1482/01	21/05/2001	Erection of a 1.5 metre high fence and gate located 100 metres north of the second vehicular entrance.	Y	23/08/2001	Dublin Vocational Education Committee
1810/01	18/06/2001	Install an additional 110kV transformer and associated equipment at the existing 110 kV substation.	Y	12/03/2002	Electricity Supply Board
4068/02	25/11/2002	Permission for continuation of use of a prefabricated building, 200 sq.m., at rear of Trinity Sports and Leisure Centre, Hole in the Wall Road, Dublin 13 for childcare facility as approved under planning permission no. 2683/99 for Lorraine Corr and Michelle Murphy.	Y	05/03/2003	Lorraine Corr \& Michelle Murphy
$\begin{gathered} \text { 0132/02 } \\ \text { PL 29N. } 131058 \\ \text { (Parent } \\ \text { Permission) } \end{gathered}$	25/01/2002	Gannon Homes LTD are submitting additional information with reference to planning application (reg. ref. 0132/02) with 10 year duration for a residential mixed use town development on lands North of grange road, Donaghmede, Dublin 13, bounded by the Dublin-Belfast railway, Mayne river Father Collins Park providing for a total of 3576 dwellings and 80600 sqm of mixed retail, commercial, leisure and community uses, associated car parking and engineering works and with provision for a new railway station. Consequent upon the request for additional information the proposed development now provides 783 one, 1900 two, 311 three, 82 four bedroom dwellings comprising 838 houses (including one special needs house for St Mary's Hospital and school, Baldoyle) 428 Duplex units and 2310 apartments ranging from 2 to 6 storeys, plus penthouse. The mixed use town development includes 73 retail units, (8719sqm.), Supermarket (1,692 sqm), offices (44,036 sqm) and media-associated uses,(8,386 sqm), 2 banks (471 sqm), 2 resturants (2576 sqm), 3 public Houses (993sqm), a 25 bed day hospital with 2 operating theatres, associated facilities and consulting rooms (2198sqm), doctors/ dentists surgery, (222sqm) veterinary Surgery (271sqm), 4 child care facilities (875sqm),community centre (566 sqm), provision for Garda Services unit(66sqm), public stairwav and lift and escalator	Y	27/06/2003	Gannon Homes LTD
2502/03	03/06/2003	We, Country Dublin V.E.C. intend to apply for permisison for the erection of a free Standing triangular Sign measuring $1.2 \times 1.2 \mathrm{~m}$ on each side and 3.7 m in height, at the entrance of Gaelcholaiste Reachrann, Grange Road, Donaghmede, Dublin 13.	Y	29/08/2003	Dublin VEC

3108/04	02/06/2004	The Electricity Supply Board intends to apply to Dublin City Council for permission under the Local Government (Planning \& Development) Acts to construct 4 no. 12 m high 38 kV Line Termination Masts in the Townland of the Grange, Dublin 13. The site location is bounded to the south by the Grange Road to the Esat by the Dublin Belfast Railway line, to the west by the Hole in by the Mayne River. This work is required in order to underground sections of the existing Grange -- mountgorry 38kV Overhead Lines in the area.	Y	06/10/2004	Electricity Supply Board (ESB)
4583/04	15/09/2004	Gannon Homes Ltd. seeks revised planning permission for sub-division of 1 no. 2 bed third floor penthouse apartment type D, to 2 no. 1 bed apartments at apartment block Site $B 1$, with no external change to building save 1 no. additional car space. Site B1 is bounded by road numbers 23,25 and 26 an located within approved residential mixed use town development Re. Ref. 0132/02 (02PL.29N.131058) on lands north of Grange Road, Donaghmede, Dublin 13 and bounded by the Dublin - Belfast Railway, Mayne River and father Collins Park.	Y	10/12/2004	Gannon Homes Ltd.
3743/04	16/07/2004	Planning permission is sought by Gannon Homes Limited for 44 one bedroom and 120 two bedroom apartments, 9 of which are duplex, all with private roof terraces, terraces and/or balconies in a six storey building with 2 seven storey corners including setback penthouse units, with basement car park underneath comprising 195 car spaces, bicycle and bin storage, also including ground floor creche (c 267 m 2) and external public recycle facility on lands north of Father Collins Park, Hole In The Wall Road, Dublin 13, with access from Hole In The Wall Road both directly and by a new distributor Road under construction approved under Planning Permission Reg. Ref. 0132/02 for a large mixed residential development with railway station at Grange, Dublin 13.	Y	09/03/2005	Gannon Homes Ltd.
3167/04	04/06/2004	Planning permission is sought by Gannon Homes Limited for 29 one bedroom and 161 two bedroom apartments, all with private roof terraces, terraces and / or balconies in two terraces of three and six blocks respectively, ranging in height from 5 storeys to 6 storeys including set back penthouse, and with one tower element at 9 storeys including set back penthouse, all with 2 no basement car parks underneath, comprising 240 car spaces, bicycles and bin storage on lands north of Father Collins Park, Hole in The Wall Road, Dublin 13 accessed from Hole in The Wall Road by a new distributor road under construction, approved under planning permission Reg. Ref. 0132/02 for a large mixed residential development with railway station at Grange, Dublin 13.	Y	09/03/2005	Gannon Homes Ltd.
1656/05	23/02/2005	Menolly Homes Ltd. seeks revised planning permission for the sub-division of 1 no. 2 bed third floor penthouse apartment type D, into 2 no. 1 bed apartments at apartment block Site B, and 1 no additional car space. Site B is bounded by Grange Lodge Avenue and Beau Park Terrace and located within approved residential mixed used town development reg. ref. 0132/02 (02PL.29N.131058) to be known as Clongriffin on lands north of Grange Road, Donaghmede, Dublin 13 and bounded by the Dublin/Belfast Railway, Mayne River and Father Collins Park.	Y	23/05/2005	Menolly Homes

2243/05	06/04/2005	Planning Permission is sought by Gannon Hpmes Ltd. for Stone Faced surrounds and shopfront fenestration to the south, east and west elevations of the 6 ground floor retail units of Block 01 of the approved mixed-use town development Reg Ref 0132/02 (PL29N. 131058) on lands north of Grange Road, Donaghmede, Dublin 13 and bounded by the Dublin-Belfast railway, Mayne river and Fr. Collins Park, in accordance with condition No. 34 of that permission which requires a separate planning application for each shop front.	Y	04/07/2005	Gannon Homes Ltd.
5945/04	20/12/2004	Planning permission is sought by Gannon Homes Ltd. for revisions to Blocks 12, 16, roads, carparks, town square and associated site works in the previously approved development (Ref. 0132/02 \& PL 29N131058) for a large mixed use residential development on lands north of Grange Road, Donaghmede, Dublin 13, bounded by the Dublin-Belfast Railway, Mayne River and Father Collins Park. Access is provided from approved distributor roads under construction from Hole in the Wall Road. The approved design of the town square is redesigned and includes the following: 5 no. pavilion buildings comprising; 2 no. retail kiosks, 2 no. stairs and 1 no. lifts/stairs to park and ride (115 sq.m.), performance stage, playground, canopy covered bike parking spaces, water feature, seating, ventilation grilles and lighting, bus taxi pick up/set down points, taxi rank, vehicular entrance and exit to Park and Ride car park under. The approved provision for a future underpass road link to lands east of the railway is to be omitted and replaced by: A civic pedestrian route south of Block 16 and a vehicular road north and east of Block 16 both of which link the town square to the lands east of the railway via a proposed overbridge and railway station (subject of a current planning application, Dublin City Council Ref. 5050/04 and Fingal County Council Ref. F04A/1484). The approved: ($6-8$ storey Block 12 comorising:sunermarket_cafe_nublichouse.	Y	15/07/2005	Gannon Homes Ltd.
5050/04	19/10/2004	Gannon Homes Ltd. intend to apply for planning permission for the development of a railway station , circa 515 metres north of Grange Road Bridge, to include; overbridge, 2 No. train platform structures, temporary pedestrian and vehicular access from permitted roads infrastructure (Ref. 0132/02), temporary car park, bus and taxi set-down points and associated ancillary works. Ancillary works include public lighting, bicycle stands, associated signage and relocation of existing railside boundary fencing at Grange Townland, Donaghmede, Dublin 13. The Bridge structure will accommodate 6 No. retail kiosks and 2 No. bin stores with toilet facilities on the south side. The north side of the bridge will accommodate a single storey station entrance building, ticket kiosk, lifts and stairs to the passenger platforms. The structures will extend into the Fingal Country Council administrative area and a simultaneous application by Helsingor Ltd. has been made to that authority in relation to the station, overbridge, access and associated site works in that administrative area.	Y	15/08/2005	Gannon Homes Ltd.
3408/05	17/06/2005	We, County Dublin VEC, intend to apply for planning permission for the location of Temporary School Accommodation of a single storey structure consisting of three general classrooms and one single storey structure consisting of toilets at the rear of the school and between the school and the football pitch for Gaelcholaiste Reachrann, Donaghmede, Dublin 13.	Y	02/09/2005	Dublin Vocational Educational Committee
4422/05	22/08/2005	Permission sought for the retention of single storey flat roof pigeon loft at the rear of 6 Railway Mews, Beaupark, Clongriffin, Dublin 13 for Mr Keith Brennan.	Y	10/11/2005	Keith Brennan

6034/05	09/12/2005	Gannon Homes Ltd intend to apply for the construction of the shopfront north, east and west elevations in a stone, metal and glazed treatment at nos $25,27,31,35$ and 39 Main St. which comprise the five units of permitted retail use which form the northern ground floor of block 21 (bouned by Main Street, Beau Park Avenue, Beau Park Street and Grange Lodge Avenue) of approved mixed use development reg. ref. 0132/02 in accordance with condition no. 34 of that permission (which requires a separate planning application for the shopfronts), on lands (now called Clongriffin) North of Grange Road, Donaghmede, Dublin 13.	Y	29/03/2006	Gannon Homes Ltd.
6253/05	21/12/2005	Ganon Homes Ltd intend to apply for planning permission for the change of use of No 39 Main Street Clongriffin Dublin 13 from retail to Cafe / Restaurant use including sale of hot food for consumption off the premises No 39 Main Street forms part of Block No 21 (bounded by Main Street, Beau Park Avenue, Beau Park Street and Grange Lodge Avenue) of approved mixed use development Reg Ref 0132/02 on lands (now called Clongriffin) north of Grange Road Donaghmede, Dublin 13. This application proposes no changes to the shopfront elevations which are currently the subject of a seperate planning application (Reg Ref 6034/05).	Y	29/03/2006	Gannon Homes Ltd.
3195/05	03/06/2005	Gannon Homes Ltd. seek planning permission for 179 residential units and a creche (368 m 2) in three blocks ranging in height from two to five and six storeys, comprising 29 onebedroom, 100 two-bedroom and 50 threebedroom apartments, 10 of which are twobedroom duplex units with private roof terraces. All apartments have terraces and/or balconies to the north, south, east and west elevations and basement car parking comprising 188 car spaces, bicycle and bin storage. The application also includes two external ESB substations. All proposed development is located on lands north east of Father Collins Park, Hole in The Wall road, Dublin 13, within approved planning permission Reg. Ref. 0132/02 (02PLN.131085) for a large mixed use development at Grange Road, Dublin 13; access is from the Hole In the Wall Road by a new distributor road under construction.	Y	20/04/2006	Gannon Homes Ltd.
1691/06	22/02/2006	Gannon Homes LTD. Seek Planning Permission for an amendment to previously approved mixed-use on lands (now called Clongriffin) north of Grange Road, Donaghmede, Dublin 13, Reg Ref. 0132/02 (02PL.29N.131058). The area concerned comprises 0.6 Hectares and is the south eastern corner of the previously approved development where the site boundary meets the N32 road to the south, the Dublin-Belfast Railway to the East and the existing Grange Road and Grange Abbey Drive to the west. The proposed amendment includes an increase in residential units from the previously permitted 33 to 41 no. units and comprises: 1 .The Removal of previously approved end-of-terrace house no. 87 and its back garden (a three-bedroom 'type p ' house) of Road no. 23A (now called Railway Road) to provide additional area to the gardens of the previously approved adjacent houses nos. 80 to 86 inclusive. 2. A re-alignment of the previously approved terrace of houses nos. 80-86 incl. moving it c. 1.6 m to the east at its northern end and c. 4.4 m to the east at is southern end. 3. A re-alignment of the previously approved apartment block (unit nos. 60-77 incl.) moving it c .3 .9 m to the south. 4. The changing of the ring road layout around the apartment block to a T-Shape arrangement to the north of the apartment block, aligned with the re-aligned terrace and the apartment block, with the previously annroved associated car narking snaces now	Y	18/05/2006	Gannon Homes Ltd.

1782/06	28/02/2006	Menolly Homes seeks Retention Permission for one 3 storey 4 bedroom end of terrace house and associated site works, previously approved (Reg. Ref. 0132/02 PL 29N.131058) as 2 -storey 3 bedroom end of terrace house and associated site works at 71, Grange Lodge Avenue, Clongriffin, Dublin 13.	Y	25/05/2006	Menolly Homes
1783/06	28/02/2006	Menolly Homes seeks Retention Permission for one 3 storey 4 bedroom end of terrace house and associated site works, previously approved (Reg. Ref. 0132/02 PL 29N.131058) as 2 -storey 3 bedroom end of terrace house and associated site works at 41, Grange Lodge Avenue, Clongriffin, Dublin 13.	Y	25/05/2006	Menolly Homes
2008/06	14/03/2006	Pennon Homes Ltd., seek planning permission for one number four bedroom two storey dwelling house with on site parking and associated works on Grange Abbey Road, Donaghmede, on lands north of Fr. Collins Park, Hole in the Wall Road, Dublin 13, within approved Planning Permission Reg. Ref. 0132/02.	Y	13/06/2006	Pennon Homes Limited
2176/06	24/03/2006	Planning permission is sought by Gannon Homes Ltd for stone faced surrounds and shopfront fenestration to the north, south, east and west elevations of the 8 ground floor retail units of block 16 of the approved mixed use town development application no 5945/04 (decision order no p2773) on lands north of Grange Road, Donaghmede, Dublin 13, and bounded by the Dublin - Belfast railway, Mayne River and Fr Collins Park, inaccordance with condition no 6 of that permission which requires a separate planning application for each shopfront.	Y	19/06/2006	Gannon Homes Ltd.
5641/06	14/11/2005	We, Norman Church \& Mulligan Holdings Ltd., intend to apply for planning permission for development at this site: Windermere, Hole In The Wall Road, Dublin 13. The development will consist of the following, a) The demolition of existing 1 no. single storey dwelling \& associated outbuildings \& 1 no. 2 storey dwelling and associated outbuildings. b) The Construction of a basement carpark with provision for 61 car parking spaces, bicycle and bin storage. c) The construction of a 4 -storey apartment building with 5 storey elements on corners, including set back penthouse units, comprising of 23 no. 2bed and 17 no. 3-bed apartments with associated projecting balconies and roof terraces to all elevations. d) Associated drainage. e) Ancillary site works, landscaping \& boundary wall treatment. f) New vehicular entrance to the Hole in The Wall Road.	Y	01/06/2006	Norman Church \& Mulligan Holdings Ltd.

2448/06	11/04/2006	Killoe Developments Ltd intend to apply for planning permission for Block 20 bounded by Main Street Beau Park Avenue, Beau Park Street and Railway Road on lands (now called Clongriffin) north of Grange Road, Donaghmede, Dublin 13. This development is bounded by the N32 road to the South, the Dublin Belfast Railway to the east, the Hole In The Wall Road to the west and the Mayne River to the north. The area concerned comprises 0.5 hectares in the town centre of the previously approved development Reg Ref 0132/02 (02PL.29N.131058). The development consist of an amendment to the east and west wings on 3rd, 4th and 5th floors of Block 20 apartments, (8 no. townhouses are unaffected) previously containing 38 no. 1 bed, 72 no. 2 bed, 6 no. 3 bed apartments. The proposed amendment comprises the replacement of 4 no. 1 bed apartments with 4 no. 3 bed residential units, each now over two floors; the upper floors of which are within previously permitted roof space. The alterations include; 1: Apartment No. 11 on Beau Park Avenue and Apartment No. 115 on Railway Road both contain an additional 52sqm of new floor area in the former 4th floor attic space over their respective units each with 3 no. new windows on the set back gable to Beau Park Street with modification of window and door openings at third floor level. 2. Apartment No.s 30 \& 31 on Beau Park Avenue containing an additional $52 \mathrm{sam} \& 60 \mathrm{sam}$ resnectively of	Y	07/07/2006	Killoe Developments
2754/06	28/04/2006	Gannon Homes Limited seek Planning permission for a new mixed use building and associated works at a greenfield site of 0.811 hectares surrounded by Clongriffin Road, Market Street, Lake Street and Dargan Street and incorporating Market Square, at Clongriffin, Dublin 13. The proposed building is $27,138 \mathrm{msq}$ (including a single-storey basement of 6814 msq) including landscaping treatment to the adjoining public square (Market Square) at the junction of Lake St. and Market St. The main uses comprise 1 no. 8 screen Cinema of $7,677 \mathrm{msq}, 4$ no. Retail Units totalling $3,810 \mathrm{msq}$ with associated internal Loading Bay and Stores of $815 \mathrm{msq}, 1$ no. Cafe/Bar of 460 msq , Offices of $5,857 \mathrm{msq}$, 1 no. Community Centre of $605 \mathrm{msq}, 1$ no. Sessional Creche of 280 msq and 1 no. automated teller machine (ATM). Associated works include the provision of an ESB substation and switchroom, a gated vehicular loading bay exit and a gated car entrance/exit to the basement all on the Clongriffin Rd. elevation as well as a gated vehicular loading bay entrance to the Lake Street elevation. 36 no. off-street car parking spaces are proposed in the basement to serve the staff of all the uses. No provision for public car parking is proposed on this site. The building height varies from 5.6 m to 24.55 m from street level. The south elevation (Market St.) will have the cafe/bar and the double-height retail units along its full length each with mezzanine floors below the partially cantilevered cinema	Y	20/11/2006	Gannon Homes Ltd.
5358/06	03/10/2006	Gannon Homes Ltd intend to apply for planning permission for the construction of the shop fronts on the north, east and west elevations in a stone, metal and glazed treatment at Nos. 1, 5, 9, 13, 17 and 21 Main Street which comprises the six units of permitted retail use which form the northern ground floor of Block 20 (bounded by Main Street, Beau Park Avenue, Beau Park Street and Railway Road) of approved mixed use development Reg. Ref. 0132/02, in accordance with condition no. 34 of that permission (which requires a seperate planning application for the shop fronts), on lands (now called Congriffin) north of Grange Road, Donaghmede, Dublin 13. The construction of the shopfronts on the north, east and west elevations in a stone, metal and glazed treatment.	Y	03/01/2007	Gannon Homes Ltd.

5674/06	20/10/2006	We Thomas and Richard Quinn intend to apply for planning permission for development at this site Block 152 Main Street, Clongriffin, (within new town under construction north of Grange Road) Dublin 13. The development consists of clear glazed screen with automatic sliding doors to the shop front opening on Main Street, clear glazed screens / opaque graphics to glazed screens to the adjoining shop front glazed panes to the left hand side of the main entrance, opaque graphics and screening to two of the three glazed panels of the shopfront screen to the left of the Main Street shopfront elevation, clear glazed screens / opaque graphics and screening to glazed screens to the shopfront along the King Dermott Street elevation, the inclusion of 1 no sign to the stone fascia at high level on both Main Street \& King Dermott Street elevations, along with 1 no projecting off licence sign to the stone fascia at high level over the main entrance on the Main Street elevation. All to previously approved Retail Unit under planning permissions reg ref nos 0132/02 \& pl29n 131058 \& 2243/05.	Y	26/01/2007	Thomas \& Richard Quinn
5701/06	23/10/2006	Change of use for part of previously approved Retail Unit, under planning permissions Reg. Ref. No.'s 0132/02 \& PL29N. 131058 \& 2243/05, for use as an off-licence, c. 21.8sq.m in area.	Y	03/01/2007	Thomas and Richard Quinn
3922/06	10/06/2006	Planning permission sought by Gannon Homes Ltd. for the 8 No. retail unit shopfronts at ground level to North, South, East and West Elevations of Block 12 of the approved mixed use town development Application no. 5945/04 (Decision order no. P2773) on lands north of the Grange Road, Donaghmede, Dublin 13 and bounded by the Dublin-Belfast railway, Mayne River and Fr. Collins Park, in accordance with Condition No. 6 of that permission which requires a separate planning application for each shop front.	Y	31/01/2007	Gannon Homes Ltd.
6637/06	18/12/2006	Extension will consist of additional storage and quiet room on the ground floor, with an external concrete escape stairs accessing an escape door in the roof from the first floor.	Y	28/03/2007	Gannon Homes Ltd.
1286/07	24/01/2007	Change of use from previously permitted retail to off-licence. It is situated on the ground floor of Block 20 of the approved mixed use development reg. ref. 0132/02 \& 5385/06 on lands north of Grange Road, Donaghmede, Dublin 13.	Y	20/04/2007	Gannon Homes Ltd.
1760/07	14/02/2007	Permission is sought for 109 units comprising : (Block 2a) 8 no 3 bed duplex apartments, 16 no 1 bed, 30 no 2 bed \& 9 no 3 bed apartments in a 5-6 storey building with ground floor commercial comprising: retail 1 (107 msq) cafe with retail for sale of related goods incorporating the sale of hot food/beverages for consumption on/off the premises (108 msq) retail 2 (268 msq) Garda Community Office (99 msq) \& substation. (Block 2b) 20 no 1 bed 20 no 2 bed \& 6 no 3 bed units in 3 storey duplex units enclosing private open space \& associated site works. The approved permission for the 78 units on this site comprises: 23 no 3 bed $\& 2$ no 4 bed houses, 14 no 1 bed 38 no 2 bed $\& 1$ no 3 bed apartments \& 473msq of ground floor commercial uses. A section of the approved Friars Lane between Dermot Street and Friars Street is to be omitted. The existing approved 52 no on street spaces are to be reconfigured with 74 no spaces and replacement is sought for the existing 50 no basement carparking spaces with 49 no spaces at ground floor level accessed from Dermot Street under a podium courtyard garden for Block 2 b . Balconies and terraces are proposed to all elevations.	Y	14/05/2007	Gannon Homes Ltd.

1850/07	26/02/2007	Change of use from previously approved Retail Unit (166sqm) to Betting Office at ground floor level together with external signage to front and 3 no. satelite dishes located on flat roof above.	Y	22/05/2007	Paddy Power PLC
2163/07	15/03/2007	New 2 storey detached dwelling with new vehicular entrance onto public road in existing side garden.	Y	22/06/2007	Mike Russell
1866/07	27/02/2007	Internal changes to Block 12 of approved mixed use town development Application number 5945/04, (Decision Order no. P2773) consisting of 1) rearranging supermarket ancillary accommodation resulting in the increase of floor area of supermarket from 2592msq (27900sq.ft) to 2910 msq (31322sq.ft), by relocating a vertical vent between the existing supermarket and multistorey car park; 2) provide direct access for shoppers between the supermarket and the cafe, by removing part of the party wall and 3) removal of permanent screen between supermarket and common circulation area of shopping centre.	Y	02/08/2007	Gannon Homes Ltd.
3862/07	26/06/2007	Alterations to vehicle access of Blocks 22 \& 23, previously approved under planning permission Reg Raf. 0132/02. The alterations comprise closure of the vehicle enterance to Block 22 from Grange Lodge Avenue, and the provision of a new vehicle enterance to Block 22 from Main Street via approved enterance to Block 23, all on lands north of Grange Road, Donaghmede, Dublin 13.	Y	24/09/2007	Barina Construction Ltd
2767/07	20/04/2007	Retention permission is sought for existing single storey extension (circa 30sqm) comprising of granny flat to rear of existing dwelling.	Y	20/09/2007	Michael Scannell
4812/07	15/08/2007	Alteration to the fourth floor of Block 22, previously approved under Reg.Ref: 0132/02. The alteration comprises the subdivision of 1 no. 2-bedroom apartment into 2 no. 2 bedroom apartments, each with private terraces; and consequent revisions to the north, south, east and west elevations. The total number of units in this block will therefore increase from 30 to 31 .	Y	15/11/2007	Barina Construction Limited
5150/07	06/09/2007	RETENTION - (A) Balcony structure including support structure, fixtures \& fittings at front of building. (B) Retractable awning / canopy \& flat roof structure at front of building, (C) Door at first floor level leading out onto balcony at front of building all in present form and all ancillary site works.	Y	13/12/2007	Trinity Sports \& Leisure Club
5160/07	07/09/2007	Construction of 5 no. shop fronts to the north and east elevations of Block 22 in accordance with condition no. 34 of previously approved planning permission reg ref 0132/02.	Y	13/12/2007	Barna Construction Ltd
5447/07	26/09/2007	Planning permission for an alteration to the fourth floor of Block 23, previously approved under planning permission reg. ref. 0132/02. The alteration comprises the subdivision of 1 no. 2-bedroom apartment into 2 no. 2bedroom apartments, each with private terraces; and consequent revisions to the north, south, east and west elevations. The total number of units in this block will therefore increase from 33 to 34 .	Y	07/01/2008	Barina Construction Ltd

5995/07	05/11/2007	The proposed development consists of: (A) Double storey extension to the front of building with windows facing front at ground \& first floor levels \& new main entrance doors with canopy to front at ground floor level. Consisting of: (1) At ground floor level, 79.8sqm toilets/changing/shower area, 18.44sqm storage, 34.2 sqm recreational, 81.5sqm circulation. (2) At first floor level: 22.12sqm kitchen, 52.2 sqm recreational including bar, 52.65 sqm smoking area, 27.12 sqm toilets, 29.05 sqm circulation. (B) Double storey extension to rear of building with windows facing rear at first floor level. Door to side at ground floor level. Door to rear at ground and first floor levels \& relocation of existing fire-escape stairs consisting of: (1) At ground floor level, 37sqm toilets/changing/shower area, 86.3 sqm boxing club training area. (2) At first floor level, 125.7 sqm boxing club gym. (C) Demolition of existing 48.6 sqm smoking area to front (which is currently subject of Planning Application reference no. 5150/07) \& existing 21.5 sqm services area to side. Removal of decommission chimneys at side \& rectangle awnings/canopies to front and all ancillary site works.	Y	19/02/2008	Trinity Sports \& Leisure Club
6024/07	07/11/2007	Construction of the ground floor shop front south, east and west elevations in a stone, metal and glazed treatment at the 4 no. permitted commercial units (2 no retail, 1 no. cafe \& 1 no. Garda Community Office) which comprise the southern ground floor of approved development reg ref 1760/07 (bounded by Main Street, Friars Street, Priory Street and Dermot Street, Clongriffin, Dublin 13), approved development reg ref 1760/07 being block 2 of approved mixed use development reg ref 0132/02.	Y	20/02/2008	Gannon Homes Ltd.
6247/07	23/11/2007	Planning permission is sought for the erection of a double sided illuminated sign for the Clongriffin Park \& Ride Carpark, located to the south west corner of Station Square approved development application no. 5945/04. (Decision Order No. P2773).	Y	27/02/2008	Gannon Homes Ltd.
4502/07	26/07/2007	Planning permission for development within approved planning permission reg. ref. 0132/02 of a large mixed use development at Clongriffin, Dublin 13. The development will consist of 98 units comprising: 7 no. 1 bed, 65 no. 2 bed \& 26 no. 3 bed apartments in a 5-7 storey building over basement car park with ground and first floor commercial use, comprising; Unit 1: shop (257sqm), Unit 2: shop (295sqm), Unit 3: shop (327sqm), Unit 4: restaurant/take away with retail for sale of related goods incorporating the sale of hot food/beverages for consumption on/off the premises (229sqm), services (278sqm). The basement car park comprises 107 car parking spaces, bicycle and bin storage. Vehicular access from Station Way for car park and loading bay. the existing approved 18 no . on street parking spaces on Station Way are to be reconfigured with 16 no. spaces. Entrances, windows, balconies and terraces are proposed to all elevations.	Y	25/02/2008	Gannon Homes Ltd.
1472/08	14/02/2008	Construction of an ESB substation and consumer switchroom with associated parking to rear of blocks 22 and 23 Main Street, with access off Grange Lodge Avenue Clongriffin Dublin 13.	Y	12/05/2008	Barina Construction Ltd

5259/07	13/09/2007	Change of use of previously approved planning permissions, reg. references: 0132/02, 5945/04, 3922/06 and 1866/07 relating to the large shop unit (supermarket), to now provide ancillary to the supermarket use: 1) the sale of hot food for consumption off the premises, and 2) the sale of intoxicating liquor (off licence) for consumption off the premises.	Y	20/05/2008	Gannon Homes Ltd.
2225/08	07/04/2008	For the location of Temporary School Accommodation of a single storey structure consisting of two Resource rooms at the rear.	Y	11/07/2008	County Dublin VEC
3283/08	18/06/2008	Permission for alterations to previously approved planning permission (reg ref. 0132/02) consisting of alterations 41 no. dwelling units on south, west and north wings of Block 10 (lands bounded by Dargan Street, Clongriffin Road and Bagwell Street), Station St. Clongriffin, Dublin 13. Alterations comprise : omission of split levels in 13 no. 3 storey 3-bed townhouses (triplexes) on south wing and 4 no. 3 storey 3 -bed townhouses on west wing; omission of 12 no. townhouses (8 no. 2-bed \& 4 no. 3 bed) and 12 no. 2-bed apartments in north wing, to replaced with 30 (26 no. 2 -bed \& 4 no. 1 -bed) apartments, including 6 no. additional units resulting relocation of 29 car spaces from ground to basement level; provision of 21 additional carparking spaces at street level; and associated alterations to north, south and west elevations, including south and west facing private roof terraces with total no. of dwellings for block 10 increased from 136 to 142.	Y	18/09/2008	Barina Construction Ltd
5973/07	02/11/2007	Planning permission is sought for revisions to block 17 existing permission (Ref. 0132/02 \& PL29N131058). The approved (5-14 no. levels over basement level comprising retail, restaurant \& offices) is to be omitted and replaced by mixed use development consisting 5-14 no. levels over 2 level basement comprising: 1 no. restaurant unit accessed from Bridge Street to include the sale of hot food for consumption off the premises (unit no. 1, 3 levels, 608sqm total) with outdoor seating to north elevation and external seating to second floor podium; 3 no. retail units each to include i) the sale of hot food for consumption off the premises and ii) for the sale of intoxicating liquor (offlicense) for consumption off the premises (unit no. 2 accessed from Bridge Street, 2 levels, 486 sqm total; unit no. 3 accessed from Dargan Lane, 209sqm; unit no. 4 accessed from Dargan Lane, 134sqm); offices (7678 sqm) with 2 no. street entrances (at Station Sq. and Dargan Lane), external balconies to west elevation at second, third and fourth floor and external terrace to north elevation at second floor and external terrace to second floor podium and external terraces at roof level to fifth, eight and thirteenth floors; loading dock below podium accessed from road to east; 2 no. substations; 70 carparking spaces within 2 level basement entered via Dargan Lane to east.	Y	02/09/2008	Gannon Homes Ltd.
4050/08	13/08/2008	Planning retention permission for change of use of ground floor apartment to an estate office and community meeting room facility with entrance to office from Grange Lodge Avenue.	Y	13/11/2008	Trustees of The Iveagh Trust

4727/08	14/10/2008	Planning permission for revisions to approved development, previously approved under planning permission reg. ref. 0132/02; to omit 12 no. duplex units (6 no. 2-bed and 6 no. 3 -bed unit) and a single 4-bed house, and to now provide a 3-storey block of 16 dwellings (4no. 1-bed units, 9 no. 2-bed units, 3no. 3bed units) with doors and windows on the west, east and north facades, private terraces and balconies on the west and east side and a single 3-bed 2-storey detached house with windows and doors on the west, east and south facades and terrace on the west and south side. The development includes 17 no . ground level car spaces, 17 no. cycle spaces and associated ancillary site works, with access from Grange Lodge Avenue.	Y	20/01/2009	Gannon Homes Ltd.
5408/08	19/12/2008	Amendments to approved plans Reg Ref 5945/04 for change of use of a 3 storey office building over basement, No 11 Station Street Clongriffin Dublin 13 (part of an approved mixed use development on lands north of Grange Road Donaghmede Dublin 13) to use for the provision of medical \& health services which incorporates a new vehicle drop off point to the main entrance area at Ground Level \& a new public entrance with part glazed lobby at first floor level. New external signage to the existing east elevation will consist of individually mounted stainless steel lettering with the words Primary Care Centre along with 2 no Corporate Logos to the existing east elevation glazing.	Y	03/04/2009	Gannon Homes Ltd.
3565/09	27/07/2009	Convert a double garage to a bedroom and single garage which will include alterations to existing front elevation.	Y	28/10/2009	Sean \& Diane Keogh
3655/09	11/08/2009	The development will consist of 2 no. single one storey temporary accommodation structures consisting of an Art Room 99.4sqm and a classroom 49sqm at the rear of the existing school building.	Y	13/11/2009	Co Dublin VEC
5470/08	23/12/2008	Planning permission for a 4-7 storey building over single basement level, and associated works, with commercial at ground floor and residential on upper floors, on a 0.6 hectare site in Clongriffin, Dublin 13, bounded to the west by Station Street, to the south by Station Hill, to the east by the Dublin-Belfast railway, and to the north by 'Block 11' of approved planning permission reg. ref. 0132/02 of a large mixed-use development at Clongriffin, Dublin 13. The commercial comprises: Unit 1-shop (140sqm); Unit 2supermarket (1490sqm gross of which 1170 sqm is net sales area) plus supermarket lobby (110 sqm) with lifts accessing a new covered pedestrian bridge over Station Street linking in at first floor level to the approved multi-storey public car park in 'Block 12' of approved permission 5945/04; Unit 3-fitness centre (2960 sqm gross) of which is 25 m swimming pool hall (525 sqm), changing facilities (320 sqm), gym (250sqm), aerobics room (150sqm), sauna \& steam rooms (30sqm), reception area with hot beverage servery and spectator seating (175 sqm), associated staff \& ancillary rooms, toilets and stores (210sqm), and associated plant rooms at basement level (1300 sqm). The residential is 75 no. dwelling units comprising 8 no. 3-bed units, 63no. 2-bed units and 4no. 1-bed units with landscaped podium at first floor. Direct podium access is from Station Street and Station Hill. 75no. car parking spaces and bicvcle and bin storage are nrovided at	Y	28/10/2009	Gannon Homes Ltd.

$\begin{aligned} & 5470 / 08 / \times 1 \\ & \text { (EOD to } \\ & 10 / 12 / 2019 \text {) } \end{aligned}$	10/12/2014	EXT OF DURATION: Planning permission for a 4-7 storey building over single basement level, and associated works, with commercial at ground floor and residential on upper floors, on a 0.6 hectare site in Clongriffin, Dublin 13, bounded to the west by Station Street, to the south by Station Hill, to the east by the Dublin-Belfast railway, and to the north by 'Block 11' of approved planning permission reg. ref. 0132/02 of a large mixeduse development at Clongriffin, Dublin 13. The commercial comprises: Unit 1-shop (140sqm); Unit 2-supermarket (1490sqm gross of which 1170 sqm is net sales area) plus supermarket lobby (110sqm) with lifts accessing a new covered pedestrian bridge over Station Street linking in at first floor level to the approved multi-storey public car park in 'Block 12' of approved permission 5945/04; Unit 3-fitness centre (2960sqm gross) of which is 25 m swimming pool hall (525 sqm), changing facilities (320 sqm), gym (250sqm), aerobics room (150sqm), sauna \& steam rooms (30sqm), reception area with hot beverage servery and spectator seating (175sqm), associated staff \& ancillary rooms, toilets and stores (210sqm), and associated plant rooms at basement level (1300 sqm). The residential is 75 no. dwelling units comprising 8no. 3-bed units, 63no. 2-bed units and 4no. 1-bed units with landscaped podium at first floor. Direct podium access is from Station Street and Station Hill. 75no. car narking spaces and bicycle and bin storage	Y	10/02/2015	Gannon Homes Ltd.
3765/09	26/08/2009	Amendments to approved plans reg refs 5954/04 \& 5408/08, consisting of the horizontal sub division of retail unit 6 by the introduction of a new floor (93sqm) at mezzanine (upper ground floor) level \& the change of use of the new area formed, from retail use to use for the provision of medical \& health services. This new area is directly connected to the adjacent Primary Care Centre at first floor level.	Y	27/11/2009	Gannon Homes Ltd.
2513/10	29/03/2010	```To erect 3 no. antennae, 1 no. dish, shrouding panels including associated equipment and cabinets which will be enclosed within the circular roof level extension of Block 12, Station Street, Clongriffen, Dublin 13 to form part of a third generation (3G) telecommunications network.```	Y	29/06/2010	Meteor Mobile Communications Ltd
WEB1068/10	19/04/2010	The construction of a single-storey extension to the side.	Y	16/07/2010	John \& Roisin Murray
2760/10	10/05/2010	Storey and a half extension to the rear comprising of an extended kitchen and family room at ground floor level and 1 no. bedroom / study at first floor level including alterations works to the existing dwelling house at no. 2 Railway Mews, with the proposed North elevation facing onto Beau Park Road all at no. 2 Railway Mews, Clongriffin, Dublin 13.	Y	05/08/2010	Robert Houraghand \& Louise Simmonson
4477/09	15/12/2009	Planning permission for the construction of an 83 -bedroom nursing home (5214 sqm gross internal floor area) on a 0.46 ha site bounded by Park Avenue, Park Terrace South and Park Row, Clongriffin, Dublin 13. The proposed development is a revision to approved planning permission reg. ref. 0132/02 (PL29N.131058) for a large mixeduse development at Clongriffin Dublin 13 and proposes to omit 47 dwellings (7 no. 3-bed houses, 2 no. 4-bed houses, 2no. 1-bed duplex units, 12 no. 2-bed duplex units, 10 no. 3-bed triplex units, 10 no. 1-bed apartments and 4 no. 2-bed apartments) originally permitted for this site and replace with proposed nursing home. The nursing home comprises a single building ranging in height from 2 to 3 storeys, arranged around a private courtyard garden. The main entrance is on Park Terrace South with staff and service entrances on Park Row. There are doors and windows to all street and courtyard elevations, there are balconies on the west elevation overlooking Park Avenue and on the internal east elevation overlooking the courtyard. The development includes 21no. on-street car parking spaces on Park Avenue, Park Terrace South and Park Row, 20no. bicycle parking spaces on Park Terrace South and Park Row, an ESB substation, a service area and bin storage accessed from Park Row, and ancillary works.	Y	26/07/2010	Gannon Homes Ltd.

2864/10	26/05/2010	The development will consists of 2 no. structures; A single storey temporary accommodation consisting of a science room 101.5sq.m and a single storey structure containing two classroom 98.7sq.m at the rear of the existing school building.	Y	24/08/2010	Co Dublin VEC
2913/10	02/06/2010	For amendments to block 21 of approved permission Reg. Ref. 0132/02 of a large mixed use development comprising: 1) The change of use of 25 Main St. from shop to cafe / restaurant including the sale of hot food for consumption off the premises. 2) The change of 27 Main St. from shop to cafe / restaurant including the sale of hot food for consumption off the premises. 3) The construction of an external vertical clad extract duct on the south courtyard elevation of Block 21.	Y	30/08/2010	Clearwater Properties Ltd
3212/10	16/07/2010	For a single storey extension (33.3sq.m) to the rear comprising of an extended kitchen and family room at ground floor level including alteration works to the existing dwelling house, with the proposed North elevation facing onto Beau Park Road.	Y	14/10/2010	Robert Houraghan \& Louise Simmonson
2918/10	03/06/2010	To erect 6 no. panel antennas (3 no. GSM/2G and 3 no. UMTS/3G) and 2 no. link dishes, together with associated equipment cabinets all enclosed within the existing circular penthouse as part of the operator's mobile phone networks.	Y	26/10/2010	Telefonica O2 Ireland Ltd
2054/11	19/01/2011	Install a telecommunications base station site comprising antennas, link dishes, ancillary equipment and telecommunications exchange containers to the roof of the building with access over an existing route. The development will form part of Vodafone (Irl) Ltd GSM \& 3G Broadband Telecommunications Network.	Y	18/04/2011	Vodafone (Irl) Ltd
2442/11	30/03/2011	The development will consist of a single storey temporary accommodation structure consisting of two disabled toilets 11.1sq.m at the rear of the existing school building.	Y	30/06/2011	Co Dublin VEC
2515/11	13/04/2011	The development will consist of 1 no. Single one storey Temporary Accommodation Structure, consisting of 3 classrooms 148.4 sq.m at the rear of the existing school building and existing prefab.	Y	14/07/2011	Co Dublin VEC
2781/11	01/06/2011	For the provision of a single storey extension to the side and rear with velux roof windows to the side, lowering the side window cill level and all associated site works.	Y	02/09/2011	Mark Kelly
2780/11	01/06/2011	For the provision of a single storey extension to the side and rear with velux roof windows to the side, lowering the side window cill level and all associated site works.	Y	02/09/2011	Sharon Fowler
2820/12	26/06/2012	Change of use from previously approved shop to doctor's surgery.	Y	26/09/2012	Gannon Properties
3281/12	27/09/2012	RETENTION: The development consists of retention of (1) a 17.0 sq.m single storey extension to the rear (2) a 4.0 sq.m timber storage shed in the rear garden (3) 17.4 sq.m of attic storage space including two rooflights on the rear slope of the main roof.	Y	03/01/2013	Gareth McGinn

3325/12	05/10/2012	New development on lands at Panhandle Park, Clongriffin, Dublin 13 comprising: (a) a 3 storey domed mosque and cultural centre (5573 sqm) which includes main prayer hall, prayer rooms, meeting rooms, general purpose room, administrative offices, 1 ground floor 1-bed apartment, créche, bookshop, library, mortuary, ancillary accommodation and two minarets which is linked to: (b) a 2-storey conference centre (2849sqm) which includes reception foyer, 600-seat conference room, 130 seat restaurant, 200-seat single-storey banquet hall, kitchens and ancillary accommodation; (c) a 2 to 3 -storey 16 -classroom primary school and a 2 to 3 -storey 12 -classroom secondary school, each with its own administrative and ancillary accommodation. shared multi-use community hall, storage, ancillary accommodation and plant (total area 6809 sqm), outdoor play space and ball courts; (d) a 2 -storey fitness centre (1392 sqm) which includes a 25 m indoor swimming pool, gym, sauna, steam room, administrative and ancillary accommodation, plant; (e) a 3-storey block of 6 no. 2-bed apartments with balconies on the south and west elevations; and (f) a 4 -storey block of 2 no. 1-bed apartments, 5 no. 2-bed apartments with balconies on the east and south elevations, and ground floor shop (231sqm). The development is accessed from Main Street, Park Avenue and Marshfield Avenue Clongriffin via the internal road	Y	27/08/2013	Dublin Welfare Society Limited
2472/13	17/04/2013	The development will consist of 1 no. single storey temporary accomodation unit, containing 2 no. 49 sqm classrooms to the rear of the existing main school building and all associated site works.	Y	22/07/2013	Co Dublin VEC
2701/13	04/06/2013	Planning permission is sought for the construction of: 1. A two storey extension with pitched tiled roof to the side (East) and rear (North), with 2 No. composite high level / velux roof windows in North facing wlevation. 2. A single storey extension with pitched tiled roof with 1 No . velux roof window to the rear (North facing). 3. A single storey extension with flat roof to the side (East) fronting proposed two storey extension described at No. 1 above. 4. The conversion of existing attic space to storage room with 2 No. velux roof windows in the rear (North facing) roof. The development will consist of: The reorganisation and extension of the ground floor level to provide a dining room, an extended kitchen, a utility room, and the relocation of ground floor toilet facilities. The extension of the first level to provide an additional bedroom with en-suite shower room. the conversion of the existing attic room to a storage room with 2 No . velux roof windows in the rear (North) facing roof and associated site works including, drainage and alteration of existing car parking area.	Y	04/09/2013	Thomas Byrne \& Louise Carthy
2726/13	07/06/2013	RETENTION: Of a free standing 2-sided advertisement sign with an advertising area o 18.3sq.m each sidde and an overall height of 7 m .	Y	04/09/2013	Gannon Properties
2262/13	01/03/2013	Construction of a terrace of 11 no. 3 storey, 3 bedroom house, each with a private roof terrace at second floor level on the west side, and each with its own car parking space in its front garden. This would amend 11 no. previously permitted house types (9 no. 0 type and 2 no. 01 type) of Reg Ref 0132/02 at the same addresses.	Y	11/09/2013	Gannon Properties
2487/13	18/04/2013	For the construction of a pair of semi detached, 2-storey, 3-bedroom houses with 4no. ancillary off-street car parking spaces in place of the previously permitted, but as yet unbuilt Housetype K1 of reg ref. 0132/02 at 31 Dermot St, Clongriffin, Dublin 13. The development includes the construction of offstreet car parking ancillary to previously permitted houses at 15 Priory Street, clongriffin, Dublin 13 (Housetype Q of Reg. Ref. 0132/02) and 19,21,23,25,27 and 29 Dermot Street, Clongriffin, Dublin 13 (all housetype P of Reg. Ref. 0132/02) and associated site works.	Y	16/09/2013	Gannon Properties

3216/13	10/09/2013	The development will consist of a proposed ground \& first floor extension to the rear of the existing building and a proposed ground \& first floor extension to the front of the existing building and all associated ancillary works.	Y	09/12/2013	Trinity Sports \& Leisure Club
3329/13	03/10/2013	For the temporary change of use and internal alteration, from previously approved shop to a community hall of 1,340 sqm gross No. 4 Station Square is located on the first floor of the previously approved mixed-use building called Block 12 (Reg. Ref. 5945/04). No external alterations are proposed.	Y	15/01/2014	Gannon Properties
3358/13	07/10/2013	RETENTION: Retention of change of use from previously approved shop unit to prayer hall.	Y	07/01/2014	Gannon Properties
3154/13	26/08/2013	Planning permission for change of use of part of permitted hotel (Reg Ref 5945/04) to 32 residential apartments. 7 no. one bedroom, 23 no. two bedroom and 2 no. three bedroom apartments are proposed on the third, fourth and fifth floors accessed from Station Square via the existing third floor residential courtyard podium. Works include re-designating existing parking spaces at basement level from hotel to residential, landscaping to central podium, new windows to existing south elevation to Station Square, alterations to north and east elevations to central podium including new balconies and access walkways and stairs, completion of lift and stair cores to the residential and alterations to the hotel/restaurant access and foyer (area 209.33sqm) from Station Square and all associated engineering works.	Y	03/02/2014	Gannon Properties
3653/13	06/12/2013	Construction of 9 no. 3-storey 3-bedroom houses \& 11 no. 2-storey 3-bedroom houses, each with its own car parking space in its front or side garden, and all associated site works.	Y	21/03/2014	Gannon Properties
2755/14	29/05/2014	The development will consist of 1no single storey temporary accommodation unit containing 2 no 56 sq.m classrooms to the rear of the existing school building and all associated site works.	Y	01/09/2014	Dublin \& Dun Laoghaire Education Board
3725/14	20/11/2014	Revisions to development permitted under Reg.Ref.: 5945/04. Revisions consist of change of use of No. 9 Station Square (608 sq.m) from a Retail Unit use, to use as a Gym with a total floor area of 608 sq.m., \& all ancillary works to facilitate this proposed use. Car parking provision is as permitted under Planning Reg. Ref. 5945/04 \& Signage is as permitted under Planning Reg.Ref. 2176/06.	Y	02/03/2015	Gannon Properties
3247/14	14/08/2014	Planning permission for 29 one bedroom, 164 two bedroom apartments, and 15 three bedroom apartments, all with private roof terraces, terraces and/or balconies in two terraces of three and six blocks respectively, ranging in height from 5 storeys to 6 storeys including setback penthouse, all with basement car parks underneath, comprising 222 carspaces, bicycle and bin storage, including requisite engineering site works, ESB stub-station, 27 street carspaces and landscaping including the extension of the Mayne River linear park, all on lands at Marrsfield Avenue, North of Father Collins Park, Clongriffin, Dublin 13, accessed from Marrsfield Avenue.	Y	04/03/2015	Hollybrook New Homes Ltd

2016/15	07/01/2015	Construction of a 3-storey block of 16 dwellings (4 no. 1-bed apartments, 4 no. 2bed apartments, 5 no. 2-bed duplex units and 3 no. 3-bed duplex units), with doors and windows on the west, east and north facades, and private terraces and balconies on the west and east sides; and a single 3bed, 2 storey detached house with windows and doors on the west, east and south facades, and terraces on the west and south sides. The development includes 17 no. ground level car spaces and 17 no. cycle spaces and associated ancillary site works, with access from Grange Lodge Avenue.	Y	13/04/2015	Gannon Properties
3380/15	07/08/2015	22 one bedroom, 83 two bedroom apartments, 14 two bedroom apartments (excess 100 sq.m) and 5 three bedroom apartments, all with private roof terraces, terraces and/ or balconies in three blocks, ranging in height from 5 storeys \& 6 storeys with a setback penthouse, all with basement car parks underneath, comprising 186 carspaces accessed from the Balgriffin Park, bicycle and bin storage, including requisite engineering site works, 8 street carspaces and landscaping including the extension of the Mayne River linear park.	Y	13/11/2015	Hollybrook New Homes Ltd
3455/15	19/08/2015	RETENTION: Retention permission is sought for the retention of 1 . Single storey extension to the rear of the original house (c.26sqm). 2. A timber storage shed in the rear garden (Barna Shed c.6sqm).	Y	23/11/2015	Mark Kelly \& Ms Etain Brady-Kelly
3697/15	25/09/2015	Planning permission for revisions to permitted development Reg. Ref. 3802/14 to amend on-street car parking to off-street car parking for No. 15 Belltree Avenue, Nos. 1 to 27 (odds) Belltree Place \& No. 37 Marrsfield Avenue, Clongriffin, Dublin 13.	Y	11/01/2016	Gannon Properties
4037/15	18/11/2015	Planning permission for revisions to permitted development Reg. Ref. 2405/12 to omit 7 no. 3-bedroom 2.5 storey houses, 6 no. 4-bedroom 2 storey houses and 4 no. 4bedroom 2.5 storey houses and now to provide 17 no. 3-bedroom 2 storey houses with 22 on-curtilage residential car parking spaces, 8 on-street visitor car parking spaces, and all ancillary and associated site works.	Y	11/04/2016	Gannon Properties
3776/15	08/10/2015	Planning permission for the construction of 84 no. dwellings, 1 no. shop and 1 no. coffee shop on lands bounded by Main Street, Dermot Street, Park Street and Friars' Street, Clongriffin, Dublin 13. The proposed development comprises 19 one bedroom apartments, 30 two bedroom apartments, 12 three bedroom apartments, 6 two bedroom duplexes and 17 three bedroom duplexes, together with a ground floor coffee shop (183sqm) and shop (183sqm). The development consists of two blocks: a 5storey element fronting Main Street (block 2a) and a 3-storey element backing onto Park Street (block 2b). The development includes a landscaped podium garden to block 2 a above 56 off street car-parking spaces and bin storage, accessed via Friars' Street, in addition to 56 on-street spaces. All units are to be provided with either private roof terraces, garden terraces and/or balconies. The development includes associated site works and infrastructure which includes landscaped open space, paths, public lighting, utilities, drainage and surface water attenuation.	Y	13/04/2016	Gannon Properties

2610/16	04/04/2016	Planning Permission for the construction of 19 no. 3-bedroom 3-storey houses, 58 no. 3bedroom 2-storey houses, 21 no. 3-bedroom 2.5-storey houses, 4 no. 1-bedroom apartments and 11 no. 2-bedroom apartments in a 4-storey block with windows to all elevations, and balconies to the east and south elevations (113 dwellings in total). The development includes 152 car spaces both on-curtilage and on-street, associated and ancillary site works.	Y	08/07/2016	Gannon Properties
2876/16	13/05/2016	Permission for change of use from previously approved shop unit to Day Activity Centre and associated minor alterations to front elevation including new double doors and signage panel.	Y	16/08/2016	Gannon Properties
3199/16	24/06/2016	Planning Permission for revisions to permitted development Reg. Ref. 3802/14 to omit 4 no. 2-bedroom apartments, 8 no. 3bedroom duplex units and 3 no. 3-bedroom triplex units (15 dwellings in total) and to now provide 13 no. 4-bedroom 3-storey houses (13 dwellings in total). The development includes 13 on-street car spaces, associated and ancillary site works.	Y	18/11/2016	Gannon Properties
3117/16	14/06/2016	Planning Permission for revisions to permitted development Reg. Ref. 2405/12 to omit 23 no. 3-bedroom 2-storey houses, 3 no. 3-bedroom 2.5 storey houses, 7 no. 4bedroom 2-storey houses, 6 no. 4-bedroom 2.5 storey houses and 36 no. 2-bedroom apartments (75 dwellings in total) and to now provide 33 no. 3-bedroom 2-storey houses, 17 no. 3-bedroom 2.5 storey houses and 25 no. 3-bedroom 3-storey houses (75 dwellings in total). The development includes 106 car spaces both on-curtilage and on-street, associated and ancillary site works.	Y	12/12/2016	Gannon Properties
4016/16	28/10/2016	Permission for 48 one bedroom, 157 two bedroom, \& 29 three bedroom apartments, all with private roof terraces, terraces and/or balconies in two terraces of two and four blocks respectively, ranging in height from 5 storeys to 6 storeys including setback penthouse, retail (289 m 2)/ office space $(887 \mathrm{~m} 2)$ at ground \& first floors, located at the eastern end of the proposed development, all with basement car park underneath, comprising 210 car spaces, bicycle and bin storage, including requisite engineering site works, ESB sub-station, 28 street car spaces and landscaping including the extension of the Mayne River linear park (amending previous permission 3247/14) all on lands at Marrsfield Avenue, North of Father Collins Park, Clongriffin, Dublin 13, accessed from Marrsfield Avenue.	Y	17/02/2017	Hollybrook New Homes Ltd
4101/16	11/11/2016	Planning permission for 5 no. 3-bedroom 2storey houses and 18 no. 3 bedroom 3 storey houses (23 dwellings in total). The development includes 30 car spaces (both onstreet and off-street), associated and ancillary site works.	Y	27/02/2017	Gannon Properties
4266/16	06/12/2016	Proposed amendments to previously permitted scheme Reg.Ref. 3380/15. The changes consist of revision/ alterations of Block A to include floor plan and elevational changes with the increase in apartment units from 34 to 42, (12 No. 1 bed units, 26 No. 2 bed units, 4 No. 3 bed units) ranging in height from 5 storeys and 6 storeys with a setback penthouse \& minor revision/ alterations of Block B to include floor plan and elevational (East) changes with no change in apartment numbers/ bedspaces to this block (total increase in apartment numbers from 124 to 132).	Y	24/03/2017	Hollybrook New Homes Ltd

2173/17	02/02/2017	The development will consist of the following: (A) Relocation of an existing temporary classroom to the rear of the main school building to accommodate the construction of 1 no. single storey detached semi-permanent general purpose room of 15 sqm (B) Block A - Single storey detached temporary building containing 2 no. 49sqm classrooms to the north of the main school building (C) Block B - Single storey detached temporary building containing 2 no. 49sqm classroom to the west of the main school building (D) Free standing canopy over external footpaths serving temporary accommodation to the rear of the main school building (E) All associated site works including connection to existing foul and storm drainage.	Y	26/04/2017	Dublin \& Dun Laoghaire Education Board
2569/17	27/03/2017	Permission is sought for development of a new hotel, located at the site known as Block 19, Station Square, Clongriffin, Dublin 13. The site is located on the south side of Station Square, Clongriffin, Dublin 13 and is bounded by station square to the North, Railway Road to the west and south west, Station Way to the south east and the proposed Block 17 (current planning application reg.Ref.3634/16) to the east. Heights vary from 7 storeys over basement carpark on Station Square to 4 and 5 storeys over basement on the other street frontages. The development will comprise principally. 209 guest bedrooms, hotel bar/restaurant/front of house reception areas, main and secondary function rooms and meeting rooms, kitchen/service/ancillary facilities, fitness suite, service and plant areas, 20 apartments (with balconies) for short term letting for holiday and business use, $(4 \times 3$ bed, 8×2 bed, 4×2 bed+study, 4×1 bed), basement carpark, controlled carpark access ramps, electrical substation, external illuminated signage, site services and site development works, minor repositioning of existing bus stop, soft and hard landscaping. Applicant: Gannon Properties.	Y	28/06/2017	Gannon Properties
2613/17	03/04/2017	Change of use from 2 no. existing retail shop units (120 sq.m), to provide 2 no. professional service offices.	Y	05/07/2017	Gannon Properties
3634/17	01/09/2016	Planning permission is sought for a development consisting of 28 one bedroom, 97 two bedroom and 14 three bedroom apartments with ancillary common facilities including meeting rooms, gym, cycle park, concierge, entrance courtyard and roof gardens; 5 retail units (c. 427 sqm total); and with 139 carspaces and ancillary engineering facilities at basement level; ESB substation and provision for antennae at top roof level. All comprised in a building ranging in height from 6 to 16 floors accessed from Station Square, Station Hill and Dargan Lane, Clongriffin with parking access off existing Block 16 down ramp from Dargan Lane.	Y	23/11/2017	Gannon Properties

4054/16	02/11/2016	The development will consist of the change of use of retail space to office space which was previously permitted under planning references 0132/02 and 5945/04 and for the provision of additional floor area as mezzanine and associated minor alterations, including new signage panel to front elevation and roof lights at third floor podium roof level. The proposed office space is to provide for general offices and / or business \& technology uses and / or office based industry uses and is designed to be suitable for a single user or multiple users with subdivisions.	Y	10/07/2017	Gannon Homes Ltd.
2955/17	19/05/2017	Revisions to development permitted under Reg.Ref.: 5945/04. Revisions consist of change of use (136 sq.m) from a retail unit use to use as a Community Meeting Room with a total floor area of 136 sq.m, and all ancillary works to facilitate this proposed use. Car parking provision is as permitted under Planning Reg. Ref. 5945/04 and signage is as permitted under Planning Reg.Ref. 2176/06.	Y	23/08/2017	Gannon Properties
2478/17	15/03/2017	Proposed amendments to previously permitted scheme Reg.Ref. 4016/16. The amendments consist of the change of use and revisions/ alterations to Block A located at the Eastern end of the proposed development to include internal floor plan and elevational alterations and a change of use on the ground/ first floor from retail/ office use to residential use, thereby increasing the apartment units from 234 to 246 , providing 2 no. 1 bed units and 10 no. 2 bed additional units. Block A building height will be reduced accordingly to take account of the retail/ office omission, minor internal basement layout changes are also proposed.	Y	11/08/2017	Hollybrook New Homes Ltd
3330/17	05/07/2017	Planning permission for development at this site, No. 15 Kingstreet currently under construction at lands at Beltree Walk, Beltree Avenue, Park Street \& Park Terrace North, Clongriffin, Dublin 13. The development will consist of a single storey extension (circa 14 sqm) to side of existing dwelling (currently under construction reg/ref 2610/16) and conversion of attic (circa 41sqm) to provide 2 No. Bedrooms with 2 No. Dormer windows to front and 1 No. Dormer to the rear to allow access to converted space, internal alterations and associated site works.	Y	06/10/2017	Eva \& Gavin McGreal
2628/17	6th April 2017	3 residential blocks: Block 25 (B25), Block 26 (B26) and Block 27 (B27) and all associated works required, including 181 car parking spaces over the 3 sites at Marsfield Crescent, Clongriffin, Dublin 13. Block 25 consists of 48 units over 7 stories at a height of 31.5 m . Block 26 consists of 71 units over 14 stories and is 56.4 m at its highest point. Block 27 consists of 48 units over 6 stories with a height of 27.85 m . Block 27 also consists of a single storey underground basement car park and a crèche facility incorporated to part of Ground Floor Level. The 167 apartment units are made up of 42 one bedroom units, 99 two bedroom units, and 26 three bedroom units. The 3 residential blocks form part of the overall development plan for the Clongriffin development.	Y	05/01/2018	Gannon Homes Ltd
4004/17	06/10/2017	The development will consist of the change of use from retail to cafe/restaurant use including the sale of hot food for consumption off the premises.	Y	17/01/2018	Gannon Properties

$\left.\begin{array}{|l|l|l|l|l|}\hline & & \begin{array}{l}\text { Dublin and Dun Laoghaire Education and } \\ \text { Training Board, intend to apply for planning } \\ \text { permission for construction of a two storey } \\ \text { post primary school building (6,966 sq.m } \\ \text { gross floor area) with associated external } \\ \text { signage for Gaelcholaiste Reachrann, Grange, } \\ \text { Donaghmede. The constituent elements of } \\ \text { the new school building comprise: (a) a two } \\ \text { storey 38 No. classroom building including }\end{array} & & \\ \hline \text { lecture and workshop rooms and 3 No. } \\ \text { pastoral offices; (b) two storey general } \\ \text { purpose element including assembly hall / } \\ \text { dining area, administration offices and } \\ \text { meeting room at ground floor; staff room, } \\ \text { library and music room at first floor; (c) } \\ \text { double height multi-use hall, (for school and } \\ \text { community use) with associated changing / }\end{array}\right)$

Appendix 3.2

Residential Development Schedule Planning \& Development Context

Residential Development Schedule for Clongriffin					
Development	No. of Units	Commercial Area (Gross)	Reg. Ref.	Developer	Status
der					
Constructed					
Beau Park	411	223	0132/02	Killoe Developments/Menolly Homes	Complete
Block 1	69	548	0132/02	Menolly Homes	Complete
Block 20	124	1056	0132/02	Killoe Developments	Complete
Block 21	128	692	0132/02	Menolly Homes	Complete
Grange Road	18	0	0132/02	Gannon Homes Ltd	Complete
B18 Affordable	98	0	5847/03	Gannon Homes Ltd	Complete
Site B1 Social	36	0	0132/02	Gannon Homes Ltd	Complete
Block 16	87	1811	5945/04	Gannon Homes Ltd	Complete
Plot A	28	0	0132/02	Pennon Homes	Complete
Block 34, 35	140	0	3195/05	Pierse Homes	Complete
Block 36	39	368	3195/05	Gannon Homes Ltd	Complete
Block 12	33	8614	5945/04	Gannon Homes Ltd	Complete
Site C	41	0	1691/06	Pennon Homes	Complete
Block 22	31	638	0132/02	Barina Construction Ltd.	Complete
Block 23	34	0	0132/02	Barina Construction Ltd.	Complete
Parkedge Plot B	32	0	0132/02	Gannon Homes Ltd	Complete
Parkedge Plot C	20	0	3653/13	Gannon Homes Ltd	Complete
Block 12 (Apartments)	30	0	3154/13	Gannon Homes Ltd	Complete
Parkedge Plot D	8	0	2405/12	Gannon Homes Ltd	Complete
Belltree	99	0	3802/14	Gannon Homes Ltd	Complete
Marrsfield Avenue	13	0	3199/16	Gannon Homes Ltd	Complete
Belltree Park	98	0	2610/16	Gannon Homes Ltd	Complete
Beltree Green	51		3117/16	Gannon Homes Ltd	Complete
Plot E Park Terrace South	17		4037/15	Gannon Homes Ltd	Complete
Sub Total	1685	13950			
Under Construction					
Park Terrace South/Park Street	45	0	2903/16	Gannon Homes Ltd	Granted
Blocks 32, 33 Marrsfield Avenue	242	340	2478/17	Hollybrook New Homes	Planning granted
Block 31 Marrsfield Avenue	132	0	4266/16	Hollybrook New Homes	Planning granted
Block 2 Main Street	84	366	3776/15	Gannon Homes Ltd	Under construction
Sub Total	503	706			
Permitted - To be implemented					
Beltree Park (Block A)	15	0	2610/16	Gannon Homes Ltd	Granted (15 of 113 not yet built)
Beltree Green	24		3117/16	Gannon Homes Ltd	Granted (24 of 75 not yet built)
Belltree Avenue	23	0	4101/16	Gannon Homes Ltd	Granted
Block 19 (Hotel)	20	8080	2569/17	Gannon Homes Ltd	Granted
Sub Total	82	8080			
Permitted - Not Being Implemented					
Block 17	139	425	3634/16	Gannon Homes Ltd	Granted
Block 29	18	0	2016/15	Gannon Homes Ltd	Granted
Block 25	40	0	2648/17	Gannon Homes Ltd	Granted
Block 26	32	300	2648/17	Gannon Homes Ltd	Granted
Block 27	48	504	2648/17	Gannon Homes Ltd	Granted

Block 28	75	4691	$5470 / 08$	Gannon Homes Ltd	Granted
Sub Total	352	5920			

Proposed (New Application/Revisions)				
Block 3	141	4523	Gerard Gannon Properties	
Block 4	74	799	Gerard Gannon Properties	
Block 5	138	393	Gerard Gannon Properties	
Block 6	270	418	Gerard Gannon Properties	
Block 8	114	0	Gerard Gannon Properties	
Block 11	96	0	Gerard Gannon Properties	
Block 13	187	6108	Gerard Gannon Properties	
Block 14	288	1933	Gerard Gannon Properties	
Block 15	92	6686	Gerard Gannon Properties	
Block 17	210	430.5	Gerard Gannon Properties	
Block 25	63	0	Gerard Gannon Properties	
Block 26	78	0	Gerard Gannon Properties	
Block 27	57	508	Gerard Gannon Properties	
Block 28	122	929	Gerard Gannon Properties	
Block 29	20	0	Gerard Gannon Properties	
Sub Total	1950	22727.5		
Units Outside Control Of Applicant				
Block 7	86		In Receivership	Previously permitted
Block 9	70		In Receivership	Previously permitted
Block 10	142		In Receivership	Previously permitted
Sub Total	298			

Appendix 3.3

Overall Development Schedule Planning \& Development Context

Residential Development Schedule for Clongriffin - January 2019

Development	No. of Units Permitted			Commercial Area Permitted (Gross)			Reg. Ref.	Developer	Status	Notes
Beau Park	411			223			0132/02	Killoe Developments/Menolly Homes	Complete	Creche
Block 1	69			548			0132/02	Menolly Homes	Complete	Retail
Block 20	124			1056			0132/02	Killoe Developments	Complete	Retail, Pharmacy, Doctor
Block 21	128			692			0132/02	Menolly Homes	Complete	Retail \& Cafe/Takeaway
Grange Road	18			0			0132/02	Gannon Homes Ltd	Complete	
B18	98			0			5847/03	Gannon Homes Ltd	Complete	
Site B1	36			0			0132/02	Gannon Homes Ltd	Complete	
Block 16	87			1811			5945/04	Gannon Homes Ltd	Complete	Gym, Chiropractor
Plot A	28			0			0132/02	Pennon Homes	Complete	
Block 34, 35	140			0			3195/05	Pierse Homes	Complete	
Block 36	39			368			3195/05	Gannon Homes Ltd	Complete	Creche
Block 12	33			8614			5945/04	Gannon Homes Ltd	Complete	Retail, Pub, Offices, Day Centre
Site C	41			0			1691/06	Pennon Homes	Complete	
Block 22	31			638			0132/02	Barina Construction Ltd.	Complete	Retail, Solicitor, Yoga
Block 23	34			0			0132/02	Barina Construction Ltd.	Complete	
Parkedge Plot B	32			0			0132/02	Gannon Homes Ltd	Complete	
Parkedge Plot C	20			0			3653/13	Gannon Homes Ltd	Complete	
Block 12 (Apartments)	30			0			3154/13	Gannon Homes Ltd	Complete	
Parkedge Plot D	8			0			2405/12	Gannon Homes Ltd	Complete	
Belltree	99			0			3802/14	Gannon Homes Ltd	Complete	
Marrsfield Avenue	13			0			3199/16	Gannon Homes Ltd	Complete	
Belltree Park	98			0			2610/16	Gannon Homes Ltd	Complete (98 of 113)	
Belltree Green	51			0			3117/16	Gannon Homes Ltd	Complete (51 of 75)	
Plot E Park Terrace South	17			0			4037/15	Gannon Homes Ltd	Complete	
Sub Total	1685			13950						
Under Construction										
Park Terrace South/Park Street	45			0			2903/16	Gannon Homes Ltd	Granted	
Block 2 Main Street	84			366			3776/15	Gannon Homes Ltd	Under construction	
Blocks 32, 33 Marrsfield Avenue	242			340			2478/17	Hollybrook New Homes	Planning granted	
Block 31 Marrsfield Avenue	132			0			4266/16	Hollybrook New Homes	Planning granted	
Sub Total	503			706						
Permitted - not yet implemented										
Belltree Park (Block A)	15			0			2610/16	Gannon Homes Ltd	Granted (15 of 113 not yet built)	
Belltree Green	24			0			3117/16	Gannon Homes Ltd	Granted. (24 of 75 not yet built)	
Belltree Avenue	23			0			4101/16	Gannon Homes Ltd	Granted	
Block 19 (Hotel)	20			8080			2569/17	Gannon Homes Ltd	Granted - 209 hotel beds	
Sub Total	82			8080						
Total Permitted/Under construction/Complete Outside of Application Area	2270			22736						
						Tolal				
 Clongriffin Planning Applications	No. of Units Permitted (not being implemented)	No. of Additional Units Proposed	Total Units Proposed	Commercial Area Permitted (Gross)	Commerc ial Area Proposed Additiona 1 (Gross)	Commercia I Area Permitted Proposed				
Block 3		141	141		4523	4523				GF retail \& offices over
Block 4		74	74		799	799				Community centre, creche, café, men's shed
Block 5		138	138		393	393				GF Retail units
Block 6		270	270		418	418				Creche
Block 8		114	114		0	0				
Block 11		96	96		0	0				Part V-96 units
Block 13		187	187		6108	6108				Ground floor retai//office over

1

Block 14		288	288		1933	1933				Ground floor retail. 97 nr . Part V units.
Block 15		92	92		6686	6686				Retail \& cinema for c .1230 patrons
Block 17 - additional units	139	71	210	425	5.5	430.5	3634/16	Gannon Homes Ltd	Granted - 139 units	
Block 25 - additional units	40	23	63	0	0	0	2648/17	Gannon Homes Ltd	Granted - 40 units	
Block 26 - additional units	32	46	78	300	-300	0	2648/17	Gannon Homes Ltd	Granted - 32 units	Creche
Block 27 - additional units	48	9	57	504	4	508	2648/17	Gannon Homes Ltd	Granted - 48 units	
Block 28 - additional units	75	47	122	4691	-3747	929	5470/08	Gannon Homes Ltd	Granted - 75 units (extension of	GF retail
Block 29 - additional units	18	2	20	0	0	0	2016/15	Gannon Homes Ltd	Granted - 18 units	Proposed 20 units
Sub Total	352	1598	1950	5920	16822.5	22727.5				
Total (Complete/Permitted/Proposed)			4220			45463.5				
Expired Planning Permissions										
Block 7	86							In Receivership	Previously permitted	
Block 9	70							In Receivership	Previously permitted	
Block 10	142							In Receivership	Previously permitted	
Sub Total	298									
Overall Total (Including B7,9\&10)			4518			45463.5				
Original Masterplan Grant 0132/02			3520			100,000				
\& amendment permissions			(28\%	se in re		(53\% dec	ase in commercial			

Appendix 6.1

Soil Investigations
 Soil, Land \& Geology

GROUND INVESTIGATIONS IRELAND LTD

CLONGRIFFIN, PLOT C \& PLOT D

GROUND INVESTIGATION REPORT

DOCUMENT CONTROL SHEET

Engineer	Waterman Moylan
Project Title	Clongriffin Plots C \& Plot D
Project No	$4064-1-14$
Document Title	Ground Investigation Report

Rev.	Status	Author(s)	Reviewed By	Approved By	Office of Origin	Issue Date
A	Final	C Finnerty	F McNamara	F McNamara	Dublin	$3^{\text {rd }}$ February 2014

Clongriffin Plots C \& D - Ground Investigation Report

Contents

1.0 Preamble

2.0 Overview
2.1 Background
2.2 Purpose and Scope

3.0 Subsurface Exploration

3.1 General
3.2 Cable Percussion Boreholes
3.3 Trial Pits
3.4 Dynamic Probing
3.5 Soakaway Testing
4.0 Ground Conditions
4.1 General
4.2 Ground Conditions
4.3 Groundwater

5.0 Recommendations and Conclusions

5.1 General
5.2 Foundations

Appendices

Appendix 1 Site Location Plan
Appendix 2 Cable Percussion Records
Appendix 3 Trial Pit Records
Appendix 4 Dynamic Probe Records
Appendix 5 Soakaway Test Records

1.0 Preamble

On the instructions of Waterman Moylan Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., between the $7^{\text {th }}$ and the $13^{\text {th }}$ of December 2013 on Plots C and D of the proposed development in Clongriffin in Dublin 13.

$2.0 \quad$ Overview

2.1 Background

The site is located adjacent to Fr Collins Park as shown in the location plan in Appendix 1. It is proposed to develop the proposed sites construct two and/or three story residential dwellings. The site slopes gradually from north to south and has previously been landscaped as part of the development of Fr. Collins Park and during recent phase of developments at adjacent sites.

2.2 Purpose and Scope

The purpose of the site investigation was to investigate subsurface soil conditions by means of trial pitting, dynamic probing and soak away testing. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 17 No. Trial Pit to a maximum depth of 3.0 m BGL
- Carry out 20 No. Dynamic Probes to a maximum depth of 4.1m BGL
- Carry out 3 No. Soakaway tests to BRE Digest 365

3.0 Subsurface Exploration

3.1 General

During the ground investigation in December 2013 a programme of trial pitting, dynamic probing and soakaway testing was undertaken to determine the sub surface conditions at the proposed site. Soakway testing was carried out in accordance with BRE Digest 365 to determine the infiltration characteristics of the site. Regular sampling and in-situ testing was undertaken in the trial pits to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation.

3.2 Cable Percussion Boreholes

The three cable percussive boreholes were carried out at locations specified by the Consulting Engineer and went to depths of between 4.6 m and 6.0 m BGL. These boreholes were completed with a Dando 2000 boring rig to undertake insitu testing and to recover geotechnical samples for description and laboratory testing.

The standard method of boring in soil for site investigation is known as the Cable Percussion method. It consists of using a Shell in non-cohesive soils and a clay
cutter in cohesive soils, both operated on a wire cable. Very hard soils, boulders and other hard obstructions are broken up by chiselling and the fragments removed with the Shell. Where ground conditions made it necessary, the borehole was lined with 200 mm diameter steel casing. While the use of the Cable Percussion method of boring gives the maximum data on soil conditions, some mixing of laminated soil is inevitable. For this reason thin lenses of granular material may not be noticed.

Disturbed samples were taken from the boring tools at suitable depths, so that there is a representative sample at the top of each change in stratum and thereafter at regular intervals down the borehole until the next stratum was encountered. The disturbed samples were then sealed and sent to the laboratory where they were visually examined to confirm the description of the relevant strata.

Standard Penetration Tests were carried out in the boreholes. The results of these tests, together with the depths at which the tests were taken are shown on the accompanying borehole records. The test consists of a thick wall sampler tube, 50 mm external diameter, being driven into the soil by a drop weight weighing 63.5 kg and with a free drop of 760 mm . For gravels and glacial till the driving shoe was replaced by a solid 60° cone.

The Standard Penetration Test number referred to as the ' N ' value is the number of blows required to drive the tube 300 mm , after an initial penetration of 150 mm . The number gives a guide to the consistency of the soil and can also be used to estimate
the relative strength/density at the depth of the test and also to estimate the bearing capacity and compressibility of the soil.

Borehole water levels were recorded, together with the depths at which seepage of water or inflows can be detected and the observations are noted in the borehole logs. In general these observations do not give an accurate indication of the actual ground water conditions as the borehole is rarely left standing at the relevant depth for a sufficient time for the water level to reach equilibrium, a permeable stratum may have been sealed off by the borehole casing or water may have been added to the borehole to facilitate progress. For this reason groundwater monitoring standpipes were installed in the boreholes to permit the equilibrium groundwater level to be established.

The borehole logs including installation details are included in Appendix 2 of this Report.

3.3 Trial Pits

Twenty trial pits were excavated using a JCB 3 CX at the locations shown in the exploratory hole location plan in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were logged and photographed by an Engineering Geologist prior to backfilling with arisings.

The trial pit logs are provided in Appendix 3 of this Report.

3.4 Dynamic Probes

The dynamic probe tests (DPH) were carried out beside the trial pits using Terrier 2000 rig in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50 kg weight in 100 mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300 mm drive length by 2. The probes were undertaken adjacent to the trial pits locations with probes A, B, C \& D undertaken adjacent to TP17.

The dynamic probe logs are provided in Appendix 4 of this Report.

3.5 Soakaway Testing

The soakaway pits were excavated to a maximum depth of 1.7 m BGL and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level recorded over time as required by BRE Digest 365. The pits were logged and photographed prior to completing the soakaway test and were backfilled with arisings and reinstated upon completion.

The soakaway test results are provided in Appendix 5 of this Report.

The above notes outline the procedures used in this site investigation and are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 2:2007) and B.S. 5930:1999 + A2:2010.

4.0 Ground Conditions

4.1 General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the borehole and trial pit records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes.

4.2 Ground Conditions

The ground conditions encountered during the investigation are summarised below with the full details of the strata encountered during the ground investigation provided in the borehole, trial pit and dynamic probe records included in the appendices of this report. The sequence of strata encountered are generally consistent across the site and are generally consisted of;

- Made Ground
- Cohesive Deposits
- Granular Deposits

Made Ground: Made Ground deposits consisting of Fill of Clay and Gravel containing occasional fragments of red brick, wire, plastic and metal pipes. The made ground was typically present to less than 1 m BGL however there were significant depths at particular locations in the site. These locations are outlined below;

- TP4, TP5, TP6 \& TP7 had Made Ground deposits from 1.3 m to 1.9 m deep and may be indicative of an in filled depression, ditch or stream at this location.
- TP8, TP9 and TP15 had Made Ground deposits present from 1.3 m to 3.0 m deep. TP15 had the deepest occurrence of Made Ground which had debris such as metal pipes, plastic bags and fragment of trees which may be indicative of previous landscaping or land filling activity at this location.
- BH3 had Made Ground to a depth of 6.0 m BGL with plastic bags noted between 1.7 m and 2.7 m BGL. This borehole was completed some distance away from the trial pits and may be indicative of an area of previous landscaping or land filling activity at this location.

Cohesive Deposits: Cohesive deposits were encountered beneath the Made Ground and were quite variable, described typically as brown or light brown slightly sandy sandy gravelly CLAY. The strength of the cohesive deposits generally increased
with depth and was typically firm or firm to stiff at shallow depths increasing to stiff with depth in the majority of the trial pits. These deposits had occasional cobble and boulder content where noted on the trial pit logs.

Granular Deposits: Granular deposits were encountered in the trial pits on the site either as lenses within the cohesive deposits or as strata underlying upper cohesive deposits to the base of the trial pits. These deposits were typically described as brown clayey gravelly fine to coarse SAND and sandy sub angular to rounded fine to coarse GRAVEL with possible clay lenses. These deposits had occasional cobble and boulder content where noted on the trial pit logs.

4.3 Groundwater

The groundwater strikes were noted during the investigation and were generally encountered as slow to moderate seepage within the cohesive deposits and as moderate to fast seepage within the granular deposits. We would point out that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall nearby construction and other factors.

4.4 Soakaway Testing

At the test locations a trial pit was excavated and filled with water to a nominal invert level. The pits were allowed to drain and the rate of fall in water level was monitored to determine the time for the water level to drop from 75% to 25% the pit volume.

The locations SP1 to SP3 did not drop the required amount and indicate that the ground conditions are not favourable for soakaway design.

5.0 Recommendations and Conclusions

5.1 General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the trial pit records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes.

An allowable bearing capacity of $70 \mathrm{kN} / \mathrm{m}^{2}$ is recommended at a depth of 1.5 m BGL for the foundations in the vicinity of BH1, TP1, TP2 \& TP3. Any soft spots encountered at this depth should be excavated and replaced with lean mix concrete.

The foundations in the vicinity of TP4, TP5, TP6, TP7, TP8 \& TP9 are recommended to be taken down below the deeper made ground deposits in this area to bear on the stiff cohesive deposits at 2.0 m BGL where an allowable bearing capacity of $100 \mathrm{kN} / \mathrm{m}^{2}$ is recommended. The possibility for variation in the depth of the made ground in the vicinity of these foundations should be considered and foundation inspections should be carried out.

An allowable bearing capacity of $70 \mathrm{kN} / \mathrm{m}^{2}$ is recommended for the foundations in the vicinity of BH2, TP10, TP11, TP12 at 1.0 m BGL while an increased value of $100 \mathrm{kN} / \mathrm{m}^{2}$ is recommended at 1.0 m BGL for TP13, TP14 \& TP16. Any soft spots encountered at this depth should be excavated and replaced with lean mix concrete.

Piled foundations are recommend for any development carried out in the vicinity of TP15 and BH3 where the base of the made ground was not proven, and extended to depths of 3.0 to 6.0 m respectively. Further investigation should be carried out in these locations to assess the depth to a competent stratum and the nature of the ground for concrete specification and pile design.

An allowable bearing capacity of $70 \mathrm{kN} / \mathrm{m}^{2}$ is recommended for the foundations of the proposed semi-detached houses in the vicinity of TP17.

Excavations for services which are required to be go below the cohesive deposits may require temporary support and dewatering if they encounter the water bearing granular deposits.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

Appendix 1: Site Location Plan

SITE INVESTIGATION LAYOUT

Leerrion of Semi Deracmis Houses

STATUS
PREIMMINARY

Appendix 2: Cable Percussion Records

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Start date: 08/01/2014
Type of drilling: CP

End date: 09/01/2014
Hole diameter: 200
Strata Description
FILL of clay and cobbles
Firm brown slightly sandy gravelly CLAY with occasional cobbles lenses

Loose and dense dark brown clayey sandy GRAVEL

Obstruction - possible BOULDER
End of Borehole at 5.70 m

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Start date: 13/01/2014
Type of drilling: CP

End date: 13/01/2014
Hole diameter: 200

Strata Description
Fill of brown clay and cobbles
Firm dark brown slightly sandy gravelly CLAY
Stiff dark brown sandy gravelly CLAY
Loose grey brown clayey slightly sandy fine \& medium GRAVEL

Client: Gannon Properties
Consultant: Waterman Moylan

Location: Dublin

Start date: 07/01/2014
Type of drilling: CP

End date: 07/01/2014
Hole diameter: 200

Strata Description

Client: Gannon Properties
Consultant: Waterman Moylan Location: Dublin
Start date: 08/04/2014
Type of drilling: CP

End date: 08/04/2014
Hole diameter: 200

Strata Description

Appendix 2: Trial Pit Records

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB
Strata Description
FILL of clay and gravel

Firm brown slightly sandy slightly gravelly CLAY with occasional cobbles

Dense brown fine to coarse angular to sub-angular clayey SAND with occasional cobbles

End of Trial pit at 2.50 m

Remarks:

Stability: Trial pit stable
Water: Trickle at 1.9 m
Remarks: Trial pit terminated at 2.5 m due to flowing sandy gravel

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB
Strata Description

Dense brown fine to coarse angular to sub-angular clayey SAND with occasional cobbles

End of Trial pit at 2.20 m

Remarks:

Remarks: Trial pit terminated due to flowing sandy gravel

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB
Strata Description

FILL of clay and gravel

Stiff to firm brown sandy gravelly CLAY with occasional cobbles

Dense brown fine to coarse angular to sub-angular clayey SAND with occasional cobbles

Co-ordinates:
Elevation:
Project no. 4064-12-13
Logged by: S.Kealy
듷ㅁ

	Samples/ tes		
O	$\stackrel{\otimes}{\stackrel{\circ}{\wedge}}$	$\begin{aligned} & \text { 듬 } \\ & 0 \end{aligned}$	¢

 $\stackrel{\cong}{\square}$ $\stackrel{\#}{0}$

End of Trial pit at 2.20 m

Remarks:

Remarks: Trial pit terminated at 2.20 m due to flowing sandy gravel

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB
Strata Description

Firm to stiff brown slightly sandy slightly gravelly CLAY with occasional cobbles

Medium dense brown fine to coarse angular to sub-angular clayey SAND with occasional cobbles

Remarks:

Stability: Trial pit stable
Remarks: Trial pit terminated at 2.50 m due to flowing sandy gravel

End of Trial pit at 2.50 m

Co-ordinates:

Elevation:
Project no. 4064-12-13
Logged by: S. Kealy

	$\begin{aligned} & \overline{0} \\ & \underset{y}{0} \\ & \hline \end{aligned}$	Samples / tests					$\stackrel{\text { ¢ }}{\text { ® }}$	
$\stackrel{\text { ® }}{ }$		$\stackrel{\stackrel{\circ}{2}}{\stackrel{\circ}{\approx}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$					

10101/2014

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB

Co-ordinates:

Elevation:
Project no. 4064-12-13
Logged by: S. Kealy

- $\widehat{\text { Samples / tests }}$

FILL of clay and gravel containing roots and wires

Firm brown slighlty sandy gravelly CLAY with occasional cobbles

Stiff brown slightly sandy gravelly CLAY with occasional cobbles

End of Trial pit at 2.90 m

Remarks:

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Strata Description
FILL of clay and gravel containing wire and plastic

End of Trial pit at 1.30 m

Remarks:

Stability: Stable
Remarks: Trial pit terminated at 1.30 m due to ESB lines located 1 m in front of the back fence.

Co-ordinates:

Elevation:
Project no. 4064-12-13
Logged by:

등

	Samples / tests		
	$\stackrel{\otimes}{\perp}$	$\stackrel{\text { 등 }}{\stackrel{\circ}{\circ}}$	

$\stackrel{ \pm}{\square}$
)
-
-
-

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Co-ordinates:
Elevation:
Project no. 4064-12-13
Logged by: S. Kealy
ᄃ $\overline{0}$ - Samples/tests

FILL of clay and gravel containing plastic bags and golf balls

Stiff brown slightly sandy gravelly CLAY

Brown fine to coarse angular to sub-angular clayey SAND with occasional cobbles

End of Trial pit at 2.40 m

Remarks:

Remarks: Trial pit terminated at 2.40 m due to flowing sandy gravel

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB

Strata Descrip
FILL of clay gravel and cobbles

Stiff light brown slightly sandy slightly gravelly CLAY with occasional cobbles

Dense grey/brown fine to coarse rounded to sub angular GRAVEL with possible clay lenses

End of Trial pit at 2.70 m

Remarks:

Stability: Trial pit stable
Water: Flowing at 0.80 m from halfway down in the fill possibly surface water runoff
Remarks: Trial pit terminated at 2.70

Co-ordinates:

Elevation:
Project no.
4064-12-13
Logged by:
S. Kealy

〒
$\stackrel{\circ}{\circ}$
0

$\stackrel{0}{\square}$

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Co-ordinates:

Elevation:
Project no.
4064-12-13
Logged by:
S. Kealy

듬

产
3
3 흧흏
$\stackrel{\text { ® }}{0}$

Medium dense brown fine to coarse sub-rounded to angular clayey gravelly SAND with occassional cobbles

Stiff brown slightly gravelly sandy CLAY with possible sand lenses

End of Trial pit at 2.90 m

Remarks:

Remarks: Trial pit terminated at 2.90 m

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB
Strata Description

Co-ordinates:

Elevation:
Project no.
4064-12-13
Logged by:
S. Kealy
둥

듬

듷
민

 \pm
\vdots
3 Depth $\stackrel{\otimes}{0}$

FILL of sand gravel and clay
Stiff brown slightly sandy gravelly CLAY with occasional cobbles.

Medium dense brown fine to coarse angular to sub-angular clayey gravelly sand with occassional cobbles

End of Trial pit at 3.00 m

Remarks:

Stability: Trial pit stable
Water: Trickle at 1.30 m
Remarks: Trial pit terminated at 3.0 m

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used:

Co-ordinates:

Elevation:
Project no.
Logged by:

FILL of gravel and sand

Firm to stiff slightly sandy gravelly CLAY with possible sand lenses and occassional cobbles

End of Trial pit at 2.90 m

Remarks:

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB

Co-ordinates:

Elevation:
Project no. 4064-12-13
Logged by:
高

Firm to stiff brown sandy gravelly CLAY with occasional cobbles

End of Trial pit at 2.60 m

Remarks:

Stability: Trial pit stable
Water: Trickle at 2.25 m
Remarks: Trial pit terminated at 2.60 m

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Strata Description
FILL of clay sand and gravel
Firm to stiff slightly sandy slightly gravelly CLAY with occassional cobbles

Co-ordinates:

Elevation:
Project no.
Logged by:

등

 S. Kealy amples / tests | 등 |
| :--- |
| 밍 | Water $\stackrel{ᄃ}{\circ}$ $\stackrel{0}{0}$

End of Trial pit at 3.00 m

Remarks:

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB
Strata Description
Co-ordinates:
Elevation:

Project no. 4064-12-13
Logged by: S. Kealy
工 $\overline{0} \widehat{0}$ Samples / tests

Stiff brown slighlty sandy gravelly CLAY with occasional cobbles

Firm light brown slightly sandy gravelly CLAY

Medium to Dense brown fine to coarse grained angular to sub-angular SAND with clay lenses and occassional cobbles

End of Trial pit at 2.80 m

Remarks:

Stability: Trial pit stable
Water: Strong flow at 2.20 m
Remarks: Trial pit terminated at 2.8 m due to flowing sand and gravel

KEY
B
D
U
Dimensions
Depth: 2.80

GROUND

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Strata Description
FILL of brown sand and gravel with metal pipes, plastic bags and pieces of trees

Co-ordinates:
Elevation:
Project no. 4064-12-13
Logged by:
S.Kealy

¢	

 an

 Water
Depth $\stackrel{0}{\circ}$ $\stackrel{\otimes}{\square}$
FILL of brown sand and gravel with metal pipes, plastic
bags and pieces of trees

End of Trial pit at 3.00 m

Remarks:

Stability: Left side collapsed at 1 m
Water: Trickle at 1.80 m and flowing at 2.8 m
Remarks: Trial pit terminated at 2.80 m

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 10/01/2014
Excavator used: JCB

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used:
Co-ordinates:
Elevation:

Project no. 4064-12-13
Logged by: S. Kealy

$\begin{aligned} & \text { 등 } \\ & \hline \stackrel{1}{\circ} \end{aligned}$		Samples / tests			$\begin{aligned} & \text { 흫 } \\ & \frac{0}{0} \\ & 300 \end{aligned}$	¢
		$\stackrel{\otimes}{\stackrel{\circ}{\gtrless}}$	$\stackrel{\text { 등 }}{\text { 응 }}$			

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB

Project Name: Plot C\&D Clongriffin

Client: Gannon Properties
Consultant: Waterman Moylan
Location: Dublin
Date: 09/01/2014
Excavator used: JCB

Co-ordinates:

Elevation:
Project no. 4064-12-13
Logged by:

TOPSOIL

Stiff brown slightly sandy gravelly CLAY with occasional cobbles

End of Trial pit at 1.70 m

Remarks:

Stability: Stable
Water: No grounwater
Remarks:

Appendix 3: Dynamic Probe Records

Appendix 4: Soakaway Records

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 0.64 mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	0.40	Hole filled with water
171	0.57	
272	0.67	
1286	1.09	Test Complete

SP2

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 0.64 mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	0.64	Hole filled with water
202	0.64	
1257	0.60	Test Complete

SP3

Soakaway Test to BRE Digest 365

The Trial pit was filled with water to 0.78 mBGL and the drop in water level with time was recorded below.

Elapsed Time Minutes	Water Level mBGL	Remarks
0	0.78	Hole filled with water
122	0.78	
1299	0.74	Test Complete

Client:	Gannon Homes Ltd
Engineer:	Waterman Moylan
Contractor:	Site Investigations Ltd

Grange Lodge,

Clongriffin, Dublin 13

Site Investigation Report

Prepared by:

Stephen Letch

Issue Date:	$24 / 08 / 2016$
Status	Final
Revision	0

Contents:

1. Introduction 1
2. Fieldwork 1
3. Laboratory Testing 2
4. Ground Conditions 3
5. Recommendations and Conclusions 4
Appendices:
6. Cable Percussive Borehole Logs
7. Trial Pit Logs and Photographs
8. Laboratory Test Results
9. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) were appointed to complete a ground investigation at Grange Lodge, Clongriffin, Dublin 13. The investigation was completed for the residential development of the site and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, trial pits and California Bearing Ratio tests. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification \& Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples recovered from the boreholes and trial pits and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were started in March and completed in April 2016 and comprised the following:

- 4 No. cable percussive boreholes
- 5 No. trial pits
- 2 No. California Bearing Ratio locations

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 4 No. locations using a Dando 150 rig and constructed a 200 mm diameter borehole. A shallow obstruction was encountered at BH01 and the borehole was moved approximately 3 m and a reattempt made to advance at the location. The boreholes terminated at the scheduled depth of 6.00 m . It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

In order to test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the N -Value with the 75 mm incremental blows listed in brackets (e.g.

BH01A at 2.00 mbg where $\mathrm{N}=24-(7,7,5,5))$. Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g. BH 01 at 1.00 mbgl where $\mathrm{N}=50 / 0 \mathrm{~mm}-(50 / 0 \mathrm{~mm})$).

The logs are presented in Appendix 1.

2.2. Trial Pits

5 No. trial pits were completed using a wheeled excavator and were logged by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated and they were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

2.3. California Bearing Ratio tests

At 2 No. locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 3 with the laboratory test data.

2.4. Surveying

Following the completion of all the fieldworks works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and the locations are shown on the site plan in Appendix 4.

3. Laboratory Testing

Geotechnical laboratory testing has been carried out on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 2 No. Moisture content
- 2 No. Atterberg limits
- 2 No. Particle size gradings
- 4 No. pH and sulphate
- 4 No. Chloride content
- 4 No. Organic content

Environmental testing was completed by Alcontrol Laboratories Ltd. and consisted of the following:

- 2 No. WAC Analysis

The laboratory test results are presented in Appendix 3.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile at BH 02 is shown below. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- TOPSOIL.
- Medium dense light brown silty very gravelly medium SAND.
- Medium dense light brown slightly silty sandy subrounded to subangular, fine GRAVEL of varied lithologies interbedded with very silty medium sand.
- Very stiff grey brown slightly sandy slightly gravelly silty CLAY with medium cobble content.

MADE GROUND was encountered in 3 of the borehole locations to a maximum depth of $1.80 \mathrm{mbgl}(\mathrm{BH} 03)$ and was not recorded at BH 02 as shown above. It was also encountered in the trial pit locations to approximately 0.50 mbgl but did extend to 1.20 mbgl at TP01. It generally consisted of a sand soil with some builders waste e.g. red brick and concrete fragments, plastic and glass.

The natural deposits across the site encountered a SAND stratum overlying GRAVEL overlying CLAY. The thickness of each stratum varied from location to location and represents the outwash deposits from the Ireland's glacial history.

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was not encountered in the borehole locations but was encountered 4 of the 5 trial pits approximately 2.50 mbgl . The strike at TP01 is at 2.40 mbg | when the stiff CLAY is encountered and this would have a low permeability. The other strikes were all recorded within the granular SAND strata encountered across the site. The strikes were recorded as seepages and therefore the borehole casings may have kept the water from entering into the boreholes as they progressed.

5.0. Recommendations and Conclusions

Please note the following caveats:
The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Foundations

Due to the unknown depth of foundation and no longer term groundwater information, this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.

The plan for the site is to build three storey apartment blocks with a two storey building to the south of the site. Due to the granular material lying above the cohesive soil and the heavy loads that are anticipated from the building, it would be recommended to pile to foundations. This will provide the best solution for the foundations and reduce any possible settlement of the building.

5.1.1. Pile Foundations

No loadings of any structures have been provided for this report and therefore all the information provided is to be used for guidance purposes only and a piling contractor or Temporary Works Designer (TWD) should be consulted to provide the most cost effective pile design.

5.1.1.1. Applicable Pile Types

This section discusses a number of possible piling solutions frequently used in Ireland to support heavily loaded structures. The pile designer or TWD should satisfy themselves that the piling platform is adequate to support the piling rigs to be used on the site. All concreted
piles (and open boreholes) should be protected to prevent operatives and others from falling into the hole.

5.1.1.2. Driven Pre-Cast or Steel Piles

The boreholes undertaken in all phases of this project have indicated the presence of significant proportions of cobbles and boulders within the glacial strata.

Pile breakage, false set, non-vertical piles and short piles may result when driving piles in these strata, requiring additional piles to be installed. The relocation of these additional piles may require redesign of pile caps that might affect the project programme. Further, integrity testing cannot always verify the structural integrity of piles, leaving a level of uncertainty with the installed piles.

For these reasons driven piles are not considered appropriate for the ground conditions encountered.

5.1.1.3. Bored (drilled) Cast-in-Place Concrete Piles

Bored piles are frequently used in ground conditions similar to those encountered on site. Due to the nature of this boring (drilling) equipment, cobbles, boulders, granular and cohesive soil strata can be penetrated successfully. However, advancing piles using this method is relatively slow.

Piling Contractors using this method frequently advance a number of pile holes prior to concreting for efficiency purposes. If this approach is adopted it is recommended that all unconcreted bores be protected from collapse by leaving the casings in place until the concrete is poured and reinforcing in place.

The pile designer should consider the hazard of an open bore as part of the piling risk assessment and the possibility of an operative falling into the open hole.

Pile lengths and pile capacities are limited by the torque of each particular machine. We would recommend that a requirement be made that the selected rig can successfully bore well beyond the final pile design length.

5.1.1.4. Continuous Flight Auger (CFA) Cast-in-Place Concrete Piles

CFA, along with bored piles, are the two most common methods of installing heavily loaded piles in Ireland. The CFA method most commonly used is the Hollow-Stem Auger, which allows concrete to be pumped under pressure to the bottom of the drilled hole while the annulus of the hole is stabilised by the auger.

The depth that CFA rigs can bore is generally limited by two items:

1. The capacity (torque) of the rig
2. The mast height. (Sometimes using a longer Kelly Bar can extend this.)

The piling contractor should give confirmation that their equipment is capable of advancing through the hard strata, potentially laden with cobbles and boulders, encountered on the site.

We would also recommend that a requirement be made that the selected rig can successfully bore well below the final pile design length. This makes allowance for some unforeseen ground conditions requiring deeper piles.

5.1.1.5. Pile Testing

Piles should be tested in order to determine their actual constructed capacity and to verify their structural integrity. Integrity testing should also be undertaken on selected piles. Consideration should be given to dynamic testing of selected piles.

5.1.1.5.1 Static Load Testing

The actual pile lengths determined by the pile designer should be verified as adequate prior to the installation of contract piles by the use of sacrificial (preliminary) piles. Therefore sacrificial piles should be installed and tested to destruction and their performance evaluated to allow changes in pile design, usually changes in length, if required.

A minimum of one sacrificial pile should be installed in each of the dominant layers where piles are to be supported namely the stiff to very stiff glacial till.

Along with sacrificial piles it is good practice to test $1+1 \%$ of contract piles to be installed across the site where conditions are uniform across the site. The number of piles tested should be increased to take account of the variation on ground conditions across this site.

5.1.1.5.2. Dynamic Load Testing

Consideration should be given to the use of dynamic testing of contract and sacrificial piles. CASE testing and CAPWAP analysis should be considered with a minimum of 5% contract piles being CASE tested and 20% of the CASE tested piles having a CAPWAP analysis.

5.1.1.5.3 Integrity Testing of Piles

Consideration should be given to integrity testing of all contract and sacrificial piles -100% of piles to be tested. Any of the following could be considered:

- Impulse method
- Sonic Echo, transient dynamic steady state vibration method
- Transient dynamic response (frequency response) method, with simulations and impedance profiles carried out on piles having anomalous results
- Sonic coring (logging) method
- Statmamic method

5.2. Groundwater

The caveats overleaf relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.
Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.
Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were no water strikes in the boreholes but water entered the trial pits when the excavations reached approximately 2.50 mbgl . No long term monitoring is available so it should be anticipated that the groundwater level would be around this level.

Due to the presence of granular soils at shallow depths, any excavation that is opened will have the possibility for water to ingress. Therefore, it should be anticipated that any excavation will have an ingress into it and although the rate of the ingress into the pits was relatively slow, this could increase during periods of wet weather.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Pavement Design

The summary of the CBR test results in Appendix 3 indicates values generally of 6.1% or more. The CBR tests samples were collected at 1.00 mbgl and 1.50 mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

5.4. Contamination

Environmental testing was carried out on two samples from the investigation and the results are shown in Appendix 3 . For material to be removed from site, landfill acceptability testing (WAC) was carried out to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material would generally be able to be treated as Inert Waste. However, discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only two samples were tested for analysis and although no major contamination was noted at the fieldwork locations, any localised contamination may have been missed. The site was also previously used as a compound for a construction company which may have caused localised pockets of contamination that were missed by this investigation. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.5. Aggressive Ground Conditions

The chemical tests results in Appendix 3 indicate a general pH value between 7.67 and 7.94, which is close to neutral and below the level of 9 , which could cause possible concern, therefore no special precautions are required.

The maximum value obtained for acid soluble sulphate was $112 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion $\left(\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2\right)$, the maximum value of $134 \mathrm{mg} / /$ shows Class 1 conditions and no special precautions are required.

Appendix 1
Cable Percussive Borehole Logs

CONTRACT: Grange Lodge			HOLE ID:	BH01
Client:	Gannon Homes Ltd	Co-ordinates:	E:722695.966	
Consultant:	Waterman Moylan		$\mathrm{N}: 740707.311$	
Site Address:	Clongriffin, Dublin 13	Elevation:	9.91 m.O.D.	
Boring Started:	14/07/2016	Hole Diameter:	200 mm	
Boring Completed:	14/07/2016	Drilled by:	T. Tindall	
Rig Type:	Dando 150	Logged by:	M. Kaliski	Sheet 1 of 1

CONTRACT: Grange Lodge HOLEID: BH01A

CONTRACT: Grange Lodge HOLE ID: BH03

CONTRACT: Grange Lodge HOLE ID: BH04

Appendix 2

Trial Pit Logs and Photographs

TP01 Pit

TP01 Sidewall

TP01 Spoil

TP02 Pit

TP02 Sidewall

TP02 Spoil

TP03 Pit

TP03 Sidewall

TP03 Spoil

TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Pit

TP05 Sidewall

TP05 Spoil

Appendix 3
Laboratory Test Results
BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{5}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	100		
$\mathbf{1 4}$	100		
$\mathbf{1 0}$	100		
$\mathbf{6 . 3}$	99.3		
$\mathbf{5 . 0}$	98.9		
$\mathbf{2 . 3 6}$	97.6		
$\mathbf{2 . 0 0}$	97.1		
$\mathbf{1 . 1 8}$	95.7		
$\mathbf{0 . 6 0 0}$	93.4		
$\mathbf{0 . 4 2 5}$	90.2		
$\mathbf{0 . 3 0 0}$	75.4		
$\mathbf{0 . 2 1 2}$	62.3		
$\mathbf{0 . 1 5 0}$	48.6		
$\mathbf{0 . 0 6 3}$	25		

[^0]Material description : slightly gravelly very silty SAND

Material description :	llightly gravelly very silty SAND
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
		$\mathbf{0 . 0 6 3 0}$	
$\mathbf{1 0 0}$	100	Diameter, mm	\% passing
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
$\mathbf{7 5}$	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$\mathbf{5 0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	100		
$\mathbf{1 4}$	100		
$\mathbf{1 0}$	100		
$\mathbf{6 . 3}$	100		
$\mathbf{5 . 0}$	99.5		
$\mathbf{2 . 3 6}$	99.1		
$\mathbf{2 . 0 0}$	98.5		
$\mathbf{1 . 1 8}$	98.4		
$\mathbf{0 . 6 0 0}$	98.1		
$\mathbf{0 . 4 2 5}$	97		
$\mathbf{0 . 3 0 0}$	78.9		
$\mathbf{0 . 2 1 2}$	59.8		
$\mathbf{0 . 1 5 0}$	43.8		
$\mathbf{0 . 0 6 3}$	15		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 2 \\
\hline \text { Sand, \% } & 84 \\
\hline \text { Clay / Silt, \% } & 15 \\
\hline
\end{array}
$$

Material description :	slightly gravelly silty SAND
Remarks :	$\begin{array}{l}\text { Soils with clay or silt content between } 15 \%-35 \% \text { can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. } \\ \text { Where material is for re-use and therefore disturbed, only soils with clay or silt >35\% are classified as clay or silt }\end{array}$

_Paddy McGonagle
California Bearing Ratio (CBR) In accordance with BS1377: Part 4: Method 7

Hole Id	Depth (mBGL)	Sample No	Lab Ref	pH Value	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ g / L	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ $\%$	Organic Content $\%$	Chloride ion Content (soil:water ratio 2:1) $\%$	\% passing 2 mm	Remarks
TP01	2.20	MK07	$16 / 685$	7.67	0.112	0.109	1.74	0.23	97.1	
TP02	1.00	MK09	$16 / 686$	7.94	0.105	0.074	1.24	0.21	70.8	
TP03	1.00	MK14	$16 / 687$	7.77	0.105	0.098	1.33	0.18	93.6	
TP04	2.00	MK11	$16 / 688$	7.71	0.106	0.105	1.58	0.25	98.5	

Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date:

Customer:
Sample Delivery Group (SDG):
Your Reference:
Location: 5309 GRANGE LODGE
Report No:

18 August 2016
D_SITEINV_NCS
160811-53

374201

This report has been revised and directly supersedes 374170 in its entirety.

We received 2 samples on Wednesday August 10, 2016 and 2 of these samples were scheduled for analysis which was completed on Thursday August 18, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:	92/A/16
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:	374201
Client Reference:		Attention:	Stephen Letch	Superseded Report:	374170

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Sample Descriptions

Grain Sizes

very fine	$<0.063 \mathrm{~mm}$	fine	$0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$	medium	$0.1 \mathrm{~mm}-2 \mathrm{~mm}$	coarse	2mm - 10 mm	very coarse	>10mm

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
13945580	GRANGE LODGE TP1	0.50	Dark Brown	Sandy Clay Loam	0.063-2.00 mm	Stones	None
13945581	GRANGE LODGE TP4	1.00	Dark Brown	Sandy Loam	0.063-2.00 mm	Stones	None

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	S74201

GRO by GC-FID (S)

$1-5 \&+\&$ @ Sample deviation (see appendix)	
Component	
Methyl tertiary butyl ether	
(MTBE)	
Benzen	

(MTBE)			\#	\#
Benzene	<10 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<10	<10
			M	M
Toluene	<2 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<2	<2
			M	M
Ethylbenzene	<3 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<3	<3
			M	M
m,p-Xylene	<6 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<6	<6
			M	M
o-Xylene	<3 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<3	<3
			M	M
sum of detected mpo xylene by GC	<9 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<9	<9
$\begin{aligned} & \text { sum of detected BTEX by } \\ & \text { GC } \end{aligned}$	<24 $\mu \mathrm{g} / \mathrm{kg}$	TM089	<24	<24

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2
Client Reference

Mass Sample taken (kg)	0.101
Mass of dry sample (kg)	0.090
Particle Size $<\mathbf{4 m m}$	$>95 \%$

Site Location
Natural Moisture Content (\%) 12.3
Dry Matter Content (\%)

Leach Test Information

Date Prepared	15-Aug-2016
pH (pH Units)	9.28
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	7.80
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.60
Volume Leachant (Litres)	0.889

[^1]| SDG: | 160811-53 | Location: | 5309 GRANGE LODGE | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-92 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2
Client Reference

Mass Sample taken (kg)	0.095
Mass of dry sample (kg)	0.090
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

5309 GRANGE LODGE
Natural Moisture Content (\%) 5.78
Dry Matter Content (\%) 94.5

Leach Test Information

Date Prepared	15-Aug-2016
pH (pH Units)	9.29
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	49.50
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.70
Volume Leachant (Litres)	0.895

[^2]| SDG: | 160811-53 | Location: | 5309 GRANGE LODGE | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-92 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ${ }^{1}$	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step		
TM018	BS 1377: Part 31990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 \& 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 \& 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0580389243	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 \& 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

[^3]| SDG: | 160811-53 | Location: | 5309 GRANGE LODGE | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-92 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Test Completion Dates

Lab Sample No(s)	13945580	13945581
Customer Sample Ref.	ANGE LODGE Th	$\begin{aligned} & \text { ANGE LODGE TF } \\ & \hline \end{aligned}$
AGS Ref.		
Depth	0.50	1.00
Type	SOLID	SOLID
ANC at pH4 and ANC at pH 6	17-Aug-2016	17-Aug-2016
Anions by Kone (w)	17-Aug-2016	17-Aug-2016
CEN 10:1 Leachate (1 Stage)	15-Aug-2016	15-Aug-2016
CEN Readings	17-Aug-2016	17-Aug-2016
Dissolved Metals by ICP-MS	18-Aug-2016	18-Aug-2016
Dissolved Organic/Inorganic Carbon	18-Aug-2016	18-Aug-2016
Fluoride	18-Aug-2016	18-Aug-2016
GRO by GC-FID (S)	17-Aug-2016	17-Aug-2016
Loss on Ignition in soils	17-Aug-2016	18-Aug-2016
Mercury Dissolved	18-Aug-2016	18-Aug-2016
Mineral Oil	17-Aug-2016	17-Aug-2016
PAH Value of soil	16-Aug-2016	16-Aug-2016
PCBs by GCMS	18-Aug-2016	18-Aug-2016
pH	16-Aug-2016	16-Aug-2016
Phenols by HPLC (W)	18-Aug-2016	18-Aug-2016
Sample description	13-Aug-2016	13-Aug-2016
Total Dissolved Solids	17-Aug-2016	17-Aug-2016
Total Organic Carbon	17-Aug-2016	17-Aug-2016

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	160811-53	Location:	5309 GRANGE LODGE	Order Number:
Job:	D_SITEINV_NCS-92	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Appendix

1. Results are expressed on a dry weight basis (dried at $35^{\circ} \mathrm{C}$) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
9. NDP - No determination possible due to insufficient/unsuitable sample.
10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.
11. Results relate only to the items tested.
12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130\%, they are generally wider for volatiles analysis, 50-150\%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect.
14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
20. For the BSEN $12457-3$ two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1 Container with Headspace provided for volatiles analysis

Incorrect container received

Deviation from method
Holding time exceeded before sample received
Samples exceeded holding time before presevation was performed
Sampled on date not provided
Sample holding time exceeded in laboratory
Sample holding time exceeded due to sampled on date
Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials \& Soils
The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Cryoodie	WhieAstestos
Anosie	BownAstestos
Coidale	Bue Abesos
Firas Adinde	-
Fbrous Arthophyte	-
Fbros Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 4
 Survey Data

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator	
	Easting	Northing		Easting	Northing
Boreholes					
BH01	322771.745	240682.504	9.91	722695.966	740707.311
BH01A	322771.349	240680.743	9.92	722695.570	740705.550
BH02	322773.578	240661.971	10.28	722697.799	740686.782
BH03	322764.356	240655.748	10.10	722688.578	740680.561
BH04	322763.491	240640.424	10.44	722687.714	740665.24
Trial Pits					
TP01	322760.648	240666.34	10.11	722684.871	740691.15
TP02	322759.578	240649.956	10.30	722683.801	740674.77
TP03	322775.153	240670.198	10.18	722699.373	740695.007
TP04	322768.882	240651.79	10.27	722693.103	740676.603
TP05	322767.285	240640.583	10.48	722691.507	740665.399
California Bearing Ratio Tests					
CBR01	322755.603	240682.157	9.79	722679.828	740706.964
CBR02	322756.554	240666.317	10.13	722680.778	740691.127

	Site Investigations Ltd Carhugar The Grange 12th Lock Road Lucan Co. Dublin	Client : Gannon Homes				Legend:		
		Englneer :	Waterman Moylan				Cable Percussion Borehole Trial Pit California Bearing Ratio	
		Project :	Grange Lodge					
		Date:	24-08-2016	Scale :	Not to Scale			
	T: 016108768	Description :	Site Investigation Plan	Rev :	1			
	E: siltd@indigo.ie	Drawing Number	SIL5309:01	Drawn by :	SL			

Client:	Gannon Homes Ltd
Engineer:	Waterman Moylan
Contractor:	Site Investigations Ltd

Block 17, Clongriffin, Dublin 13

 Site Investigation ReportPrepared by:

Stephen Letch

Issue Date:	$14 / 07 / 2016$
Status	Final
Revision	1

1. Introduction 1
2. Fieldwork 1
3. Laboratory Testing 2
4. Ground Conditions 3
5. Recommendations and Conclusions 4

Appendices:

1. Cable Percussive Borehole Logs
2. Rotary Corehole Logs
3. Trial Pit Logs and Photographs
4. Laboratory Test Results
5. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) were appointed to complete a ground investigation at Block 17, Clongriffin, Dublin 13. The investigation was completed for the residential development of the site and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, rotary coreholes and trial pits. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification \& Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples recovered from the boreholes and trial pits and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were completed in March 2016 and comprised the following:

- 6 No. cable percussive boreholes
- 3 No. rotary coreholes
- 6 No. trial pits

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 6 No. locations using a Dando 150 rig and constructed a 200 mm diameter borehole. Due to shallow obstructions at BH05 and BH06 then the boreholes had to be moved and reattempt to advance the borehole below the MADE GROUND. The boreholes were terminated at various depths from 4.20 mbgl (BHO) to 13.70 mbgl (BH01). It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

In order to test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the N -Value with the 75 mm incremental blows listed in brackets (e.g. BH01 at 1.00 mbgl where $\mathrm{N}=46-(21,9,9,7))$. Where refusal of 50 blows across the test zone was
encountered was achieved during testing, the penetration depth is also reported (e.g. BH 01 at 13.00 mbgl where $\mathrm{N}=50 / 80 \mathrm{~mm}-(32,18 / 5 \mathrm{~mm})$).

The logs are presented in Appendix 1.

2.2. Rotary Coreholes

3 No. rotary coreholes were completed at the same locations as $\mathrm{BH} 02, \mathrm{BH} 04$ and BH 05 B in order to confirm if the borehole terminated on a boulder obstruction or to recover bedrock for strength testing. The coreholes were advanced to 15 mbgl and no rock was encountered so the boreholes terminated in boulder obstructions. The drilling crew undertook SPT tests at 1.50 m intervals below the termination depth of the boreholes and the coreholes were backfilled upon completion.

The logs are presented in Appendix 2.

2.3. Trial Pits

6 No. trial pits were completed using a wheeled excavator and were logged by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated and they were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 3.

2.4. Surveying

Following the completion of all the fieldworks works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and the locations are shown on the site plan in Appendix 5.

3. Laboratory Testing

Geotechnical laboratory testing has been carried out on representative soil samples in accordance with BS 1377 (1990). Testing included:

- Moisture content
- Atterberg limits
- Particle size gradings
- pH and sulphate
- Chloride content
- Organic content

Environmental testing was completed by Alcontrol Laboratories Ltd. and consisted of the following:

- WAC Analysis

The laboratory test results are presented in Appendix 4.

4. Ground Conditions

4.1. Overburden

A summary of the ground profile from the deepest borehole, BH01, is shown overleaf. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- MADE GROUND: dark brown sandy clay with much brick, timber and concrete.
- MADE GROUND: black sandy gravelly silty clay with some timber.
- Stiff brown slightly sandy slightly gravelly silty CLAY.
- Stiff becoming very stiff black slightly sandy slightly gravelly silty CLAY.
- Very stiff black slightly sandy slightly gravelly silty CLAY with low cobble content.

The overburden deposits are of glacial origin and the particle size gradings of the cohesive soils display characteristic well-graded 'straight-line' profiles for the glacial material. Fines contents (i.e. silt \& clay) from the gradings show the cohesive soils with 32% and 42% silt/clay and the Atterberg Limits tests show silty CLAY samples were tested.

The coreholes were advanced to 15 mbgl and confirm that bedrock is deeper than this depth as no rock was encountered. The rotary driller did report returns of sand overlying gravel from 10 mbgl .

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was not encountered during the drilling of the boreholes, however, water did ingress into BH 01 and BH06A when the borehole was left overnight. The groundwater was then removed from the boreholes as the drilling continued and the boreholes finished dry.

Water ingressed in four (TP01, TP03, TP04 and TP05) of the six boreholes. The depth of water strike varied from 1.00 mbgl in TP04 and the 3.00 mbgl to 3.10 mbgl in the other three trial pits. All the ingresses were slow and were recorded as seepages.

5.0. Recommendations and Conclusions

Please note the following caveats:
The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Foundations

The planned development is a sixteen-storey structure and therefore it would be anticipated that the loadings from this size of structure would be too high for conventional shallow foundations and piled foundations will be required. Therefore no shallow foundation analysis has been completed as part of this report.

5.1.1. Pile Foundations

No loadings of any structures have been provided for this report and therefore all the information provided is to be used for guidance purposes only and a piling contractor or Temporary Works Designer (TWD) should be consulted to provide the most cost effective pile design.

5.1.1.1. Applicable Pile Types

This section discusses a number of possible piling solutions frequently used in Ireland to support heavily loaded structures. The pile designer or TWD should satisfy themselves that the piling platform is adequate to support the piling rigs to be used on the site. All concreted piles (and open boreholes) should be protected to prevent operatives and others from falling into the hole.

5.1.1.2. Driven Pre-Cast or Steel Piles

The boreholes undertaken in all phases of this project have indicated the presence of significant proportions of cobbles and boulders within the glacial strata.

Pile breakage, false set, non-vertical piles and short piles may result when driving piles in these strata, requiring additional piles to be installed. The relocation of these additional piles may require redesign of pile caps that might affect the project programme. Further, integrity testing cannot always verify the structural integrity of piles, leaving a level of uncertainty with the installed piles.

For these reasons driven piles are not considered appropriate for the ground conditions encountered.

5.1.1.3. Bored (drilled) Cast-in-Place Concrete Piles

Bored piles are frequently used in ground conditions similar to those encountered on site. Due to the nature of this boring (drilling) equipment, cobbles, boulders, granular and cohesive soil strata can be penetrated successfully. However, advancing piles using this method is relatively slow.
Piling Contractors using this method frequently advance a number of pile holes prior to concreting for efficiency purposes. If this approach is adopted it is recommended that all unconcreted bores be protected from collapse by leaving the casings in place until the concrete is poured and reinforcing in place.

The pile designer should consider the hazard of an open bore as part of the piling risk assessment and the possibility of an operative falling into the open hole.

Pile lengths and therefore pile capacities are limited by the torque of each particular piling machine. We would recommend that a requirement be made that the selected rig can successfully bore well beyond the final pile design length.

5.1.1.4. Continuous Flight Auger (CFA) Cast-in-Place Concrete Piles

CFA, along with bored piles, are the two most common methods of installing heavily loaded piles in Ireland. The CFA method most commonly used is the Hollow-Stem Auger, which allows concrete to be pumped under pressure to the bottom of the drilled hole while the annulus of the hole is stabilised by the auger.
The depth that CFA rigs can bore is generally limited by two items:

1. The capacity (torque) of the rig
2. The mast height. (Sometimes using a longer Kelly Bar can extend this.)

The piling contractor should give confirmation that their equipment is capable of advancing through the hard strata, potentially laden with cobbles and boulders, encountered on the site.

We would also recommend that a requirement be made that the selected rig can successfully bore well below the final pile design length. This makes allowance for some unforeseen ground conditions requiring deeper piles.

5.1.1.5. Pile Testing

Piles should be tested in order to determine their actual constructed capacity and to verify their structural integrity. Integrity testing should also be undertaken on selected piles. Consideration should be given to dynamic testing of selected piles.

5.1.1.5.1 Static Load Testing

The actual pile lengths determined by the pile designer should be verified as adequate prior to the installation of contract piles by the use of sacrificial (preliminary) piles. Therefore sacrificial piles should be installed and tested to destruction and their performance evaluated to allow changes in pile design, usually changes in length, if required.

A minimum of one sacrificial pile should be installed in each of the dominant layers where piles are to be supported, namely the stiff to very stiff glacial till.

Along with sacrificial piles it is good practice to test $1+1 \%$ of contract piles to be installed across the site where conditions are uniform across the site. The number of piles tested should be increased to take account of the variation on ground conditions across this site.

5.1.1.5.2. Dynamic Load Testing

Consideration should be given to the use of dynamic testing of contract and sacrificial piles. CASE testing and CAPWAP analysis should be considered with a minimum of 5% contract piles being CASE tested and 20% of the CASE tested piles having a CAPWAP analysis.

5.1.1.5.3 Integrity Testing of Piles

Consideration should be given to integrity testing of all contract and sacrificial piles -100% of piles to be tested. Any of the following could be considered:

- Impulse method
- Sonic Echo, transient dynamic steady state vibration method
- Transient dynamic response (frequency response) method, with simulations and impedance profiles carried out on piles having anomalous results
- Sonic coring (logging) method
- Statmamic method

5.2. Groundwater

The caveats overleaf relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.
Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were no water strikes in the boreholes but water did enter the holes when left overnight. This suggests that the soil does have water present within the pores but the permeability of the soil is very low and therefore takes time to enter any void. Water did enter four of the trial pits and these were also recorded as seepages rather than faster ingresses.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations of the CLAY will be at depth and generally will be slow.

If groundwater is encountered during shallow excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Contamination

Environmental testing was carried out on two samples from the investigation and the results are shown in Appendix 4. For material to be removed from site, landfill acceptability testing (WAC) was carried out to determine whether the material on the site could be accepted as
'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material mostly falls within the Inert Waste category. However, the sulphate result from the sample taken at BH01 did slightly exceed the Inert level. Therefore it is important that discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only two samples were tested for analysis and although no contamination was noted at the fieldwork locations, any localised contamination may have been missed. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.4. Aggressive Ground Conditions

The chemical tests results in Appendix 4 indicate a general pH value between 8.61 and 8.96, which is close to neutral and below the level of 9 , which could cause possible concern, therefore no special precautions are required.

The maximum value obtained for acid soluble sulphate was $115 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion $\left(\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2\right)$, the maximum value of $138 \mathrm{mg} / \mathrm{l}$ shows Class 1 conditions and no special precautions are required.

Appendix 1
Cable Percussive Borehole Logs

CONTRACT: Block 17				HOLE ID:					BH02		
Client: Consultant: Site Address: Boring Commenced: Boring Completed: Rig Type:	Gannon Homes Waterman Moylan Railway Road, Clongriffin, Dublin 13 16/03/2016 16/03/2016 Dando 150			Co-ordinates: E:723021.376 N:740697.051 Elevation: $8.27 \mathrm{~m} .0 . \mathrm{D}$. Hole Diameter: $\mathbf{2 0 0} \mathrm{mm}$ Drilled by: T. Tindall Logged by: S. Letch				Sheet 1 of 1			
DESCRIPTION OF STRATA		$\begin{aligned} & \frac{5}{b_{0}} \\ & \frac{\partial}{\overline{5}} \bar{E} \end{aligned}$	$\begin{aligned} & \text { 므﹎ } \\ & \stackrel{\rightharpoonup}{3} \end{aligned}$		Samples/Tests			Progress/Water			
		Type			$\underset{(\mathrm{m})}{\text { Depth }}$	$\begin{aligned} & \text { Ref } \\ & \text { No. } \end{aligned}$	$\left\|\begin{array}{c} \text { Hole } \\ \text { Depth } \\ (\mathrm{m}) \end{array}\right\|$	Date	Watert Depth (m)		
MADE GROUND: dark brow timber and concrete.	sandy clay with much brick,				8.27	B SPT(C) B	0.50 1.00 1.50	$\begin{gathered} T T 41 \\ \mathrm{~N}=21-(5,4,6,6) \\ \mathrm{T} T 42 \end{gathered}$			
Stiff brown slightly sandy sid	gravelly silty CLAY.	$E_{20}^{1.80}$ E E E E E E 0^{20}		6.47	SPT(C) B SPT(C) B SPT(C)	2.00 2.50 3.00 3.50 4.00	$\begin{gathered} \mathrm{N}=17-(4,4,5,4) \\ \text { TT43 } \\ \mathrm{N}=23-(5,7,6,5) \\ \text { TT44 } \\ \mathrm{N}=50 / 10 \mathrm{~mm}- \end{gathered}$				
Obstruction - possible bould	struction.			$\frac{4.17}{4.07}$			(50/10mm)	4.20	181032016	Dry(E)	
Remarks: (Note: Stratum bands <200mm are not indicated pictorially) Chiselling: 4.10 m to 4.20 m : 1 hr Borehole backfilled - no installation.											
		Site Investigations Ltd									

CONTRACT: Block			HOLE ID:	BH03
Client:	Gannon Homes	Co-ordinates:	E:723040.296	
Consultant:	Waterman Moylan		$\mathrm{N}: 740720.263$	
Site Address:	Railway Road, Clongriffin, Dublin 13	Elevation:	7.73 m .O.D.	
Boring Commenced:	14/03/2016	Hole Diameter:	200 mm	
Boring Completed:	14/03/2016	Drilled by:	T. Tindall	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

CONTRACT: Block			HOLE ID:	BH04
Client:	Gannon Homes	Co-ordinates:	E:723023.240	
Consultant:	Waterman Moylan		N:740688.569	
Site Address:	Railway Road, Clongriffin, Dublin 13	Elevation:	8.31 m.O.D.	
Boring Commenced:	22/03/2016	Hole Diameter:	200 mm	
Boring Completed:	22/03/2016	Drilled by:	T. Tindall	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

DESCRIPTION OF STRATA			0 0 		Samples/Tests			Progress/Water		
					Type	Depth (m)	Ref No.	Hole Depth (m)	Date	Water Depth (m)
MADE GROUND: dark brown sandy clay with much brick, timber and concrete.		0.0 0.00 E E		8.31	B	0.50	TT45			
Stiff brown slightly sandy slightly gravelly silty CLAY.		$\overline{1.0}$ 0.90 E E E E 2.0 E E E 3.0 E - E 4.0 E		7.41	SPT(C) B SPT(C) B SPT(C) B SPT(C) B	$\begin{aligned} & 1.00 \\ & 1.50 \\ & 2.00 \\ & 2.50 \\ & 3.00 \\ & 3.50 \\ & 4.00 \\ & 4.50 \end{aligned}$	$\mathrm{N}=17-(4,4,5,4)$ TT46 $N=22-(5,5,5,7)$ TT47 $N=27-(8,6,6,7)$ TT48 $N=26-(6,6,7,7)$ TT49			
Obstruction - possible boulder. Borehole terminated due to obstruction.			$\bar{\Lambda}$	$\frac{3.51}{3.41}$	SPT(C)	4.90	$\begin{aligned} & \mathrm{N}=50 / 5 \mathrm{~mm}- \\ & (50 / 5 \mathrm{~mm}) \end{aligned}$	4.90	22/03/2016	Dry(E)
		10.0								
Remarks: (Note: Stratum bands $<200 \mathrm{~mm}$ are not indicated pictorially) Chiselling: 4.80 m to 4.90 m : 1 hr Borehole backfilled - no installation.	B Bulk Disturbed Sample D Small disturbed sample W Water sample $\mathrm{U}(9) \quad$ Undisturbed sample (drive blow						mbols Standard Pen Standard Pen Waterstrike d Water level d Depth to water Depth to water	ration ration th th 20 m (E)nd (S)tart	Test (Split est (Cone) ins after strik f shift of shift	poon) ke
	Site Investigations Ltd									

CONTRACT:	Block 17			HOLE ID:	BHO5
Client:	Gannon Homes	Co-ordinates:	E:723026.934		
Consultant:	Waterman Moylan		N:740711.943		
Site Address:	Railway Road, Clongriffin, Dublin 13	Elevation:	8.05 m. O.D.		
Boring Commenced:	15/03/2016	Hole Diameter: 200 mm			
Boring Completed:	15/03/2016	Drilled by:	T. Tindall		
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1	

CONTRACT: Block 17

HOLE ID:
BH05A

CONTRACT: Block 17

HOLE ID:
BH05B

CONTRACT: Block 17			HOLE ID:	BH06
Client:	Gannon Homes	Co-ordinates:	E:723019.549	
Consultant:	Waterman Moylan		N:740726.787	
Site Address:	Railway Road, Clongriffin, Dublin 13	Elevation:	8.03 m.O.D.	
Boring Commenced:	10/03/2016	Hole Diameter:	200 mm	
Boring Completed:	10/03/2016	Drilled by:	T. Tindall	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

CONTRACT: Block 17			HOLE ID:	BH06A
Client:	Gannon Homes	Co-ordinates:	E:723020.764	
Consultant:	Waterman Moylan		N:740724.976	
Site Address:	Railway Road, Clongriffin, Dublin 13	Elevation:	8.12 m . O.D.	
Boring Commenced:	10/03/2016	Hole Diameter:	200 mm	
Boring Completed:	14/03/2016	Drilled by:	T. Tindall	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 2

CONTRACT: Block 17 HOLE ID: BH06A

Appendix 2

Rotary Corehole Logs

Rotary Corehole Log

CONTRACT: Block 17

Client:	Gannon Homes
Consultant:	Waterman Moylan
Site Address:	Railway Road, Clongriffin, Dublin 13
Date Commenced:	$01 / 07 / 2016$
Date Completed:	$01 / 07 / 2016$
Corehole Diameter:	156 mm

HOLE ID: RC02

Co-ordinates:
E:723021.376
N:740697.051
Elevation:
Drilled by:
Logged by:
8.27 m.O.D.
J. Campbell
S. Letch

Sheet 2 of 2

Rotary Corehole Log

CONTRACT: Block 17

HOLE ID:
RC04

Client:	Gannon Homes
Consultant:	Waterman Moylan
Site Address:	Railway Road, Clongriffin, Dublin 13
Date Commenced:	$05 / 07 / 2016$
Date Completed:	$05 / 07 / 2016$
Corehole Diameter:	156 mm

Co-ordinates:	E:723023.240
	N:740688.569
Elevation:	8.31 m.O.D.
Drilled by:	J. Campbell
Logged by:	S. Letch

Sheet 2 of 2

Rotary Corehole Log

CONTRACT: Block 17

Client:	Gannon Homes
Consultant:	Waterman Moylan
Site Address:	Railway Road, Clongriffin, Dublin 13
Date Commenced:	$04 / 07 / 2016$
Date Completed:	$04 / 07 / 2016$
Corehole Diameter:	156 mm

HOLE ID:
E:723026.616
$\mathrm{N}: 740708.987$
Elevation: $\quad 7.98$ m.O.D.
Drilled by: J. Campbell
Logged by: S. Letch

RC05B

Appendix 3

Trial Pit Logs and Photographs

TP01 Pit

TP01 Sidewall

TP01 Spoil

TP02 Pit

TP02 Sidewall

TP02 Spoil

TP03 Pit

TP03 Sidewall

TP03 Spoil

TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Pit

TP05 Sidewall

TP05 Spoil

TP06 Pit

TP06 Sidewall

TP06 Spoil

Appendix 4

Laboratory Test Results

Client	Gannon Homes												
Site	Clongriffin - Block 17												
S.I. File No	5269 / 16												
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01)6108768 Email siltd@indigo.ie												
Report Date	18th April 2016												
Hole ID	Depth	Sample No	Lab Ref No.	Sample Type	Natural Moisture Content \%	Liquid Limit \%	Plastic Limit \%	Max. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	$\begin{gathered} \hline \text { Min. Dry } \\ \text { Density } \\ \mathrm{Mg} / \mathrm{m}^{3} \end{gathered}$	Particle Density $\mathrm{Mg} / \mathrm{m}^{3}$	$\begin{gathered} \text { \% passing } \\ \text { 425um } \end{gathered}$	Comments	Remarks C=Clay; M=Silt Plasticity: L=Low; $\mathbf{I}=$ Intermediate; $\mathbf{H}=\mathrm{High} ;$ V=Very High; E=Extremely High
BH03	3.50	TT30	16/375	B	9.3	37	22				52.0		CI
BH06A	3.50	TT321	16/376	B	9.3	34	21				59.6		CL

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{0}$	100		
$\mathbf{3 7 . 5}$	82.6		
$\mathbf{2 8}$	82.6		
$\mathbf{2 0}$	81.6		
$\mathbf{1 4}$	79.8		
$\mathbf{1 0}$	76.6		
$\mathbf{6 . 3}$	71.1		
$\mathbf{5 . 0}$	69.3		
$\mathbf{2 . 3 6}$	63.4		
$\mathbf{2 . 0 0}$	62		
$\mathbf{1 . 1 8}$	58.1		
$\mathbf{0 . 6 0 0}$	54.5		
$\mathbf{0 . 4 2 5}$	52		
$\mathbf{0 . 3 2 0}$	50.3		
$\mathbf{0 . 2 1 2}$	48.1		
$\mathbf{0 . 1 5 0}$	45.7		
$\mathbf{0 . 0 6 3}$	40		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 38 \\
\hline \text { Sand, \% } & 22 \\
\hline \text { Clay / Silt, \% } & 40 \\
\hline
\end{array}
$$

Material description : slightly sandy gravelly silty CLAY

Material description :	llightly sandy gravelly silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
		\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
$\mathbf{7 5}$	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$\mathbf{5 0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	94.2		
$\mathbf{1 4}$	93		
$\mathbf{1 0}$	89.8		
$\mathbf{6 . 3}$	84.4		
$\mathbf{5 . 0}$	81.9		
$\mathbf{2 . 3 6}$	74.5		
$\mathbf{2 . 0 0}$	72.9		
$\mathbf{1 . 1 8}$	68		
$\mathbf{0 . 6 0 0}$	62.7		
$\mathbf{0 . 4 2 5}$	59.6		
$\mathbf{0 . 3 0 0}$	56.7		
$\mathbf{0 . 2 1 2}$	52.3		
$\mathbf{0 . 1 5 0}$	49.4		
$\mathbf{0 . 0 6 3}$	42		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 27 \\
\hline \text { Sand, \% } & 31 \\
\hline \text { Clay / Silt, \% } & 42 \\
\hline
\end{array}
$$

Material description : slightly gravelly slightly sandy silty CLAY

Material description :	llightly gravelly slightly sandy silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

\quad Chemical Testing
In accordance with BS 1377: Part 3

| Client | Gannon Homes Ltd. | |
| :--- | :--- | :--- | :--- |
| Site | Clongriffin - Block 17 | |
| S.I. File No | $5269 / 16$ | |
| Test Lab | Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email siltd@indigo.ie | |
| Report Date | 18th April 2016 | |

Hole Id	Depth (mBGL)	Sample No	Lab Ref	pH Value	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ g / L	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ $\%$	Organic Content $\%$	Chloride ion Content (soil:water ratio 2:1) $\%$	\% passing 2 mm	Remarks

Carhugar
12th Lock Road
Lucan
Co. Dublin
Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date:

Customer:

Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

22 March 2016
D_SITEINV_NCS
160312-101
Block 17
Clongriffin
354287

We received 2 samples on Saturday March 12, 2016 and 2 of these samples were scheduled for analysis which was completed on Tuesday March 22, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	S54287

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

Sample Descriptions

Grain Sizes

very fine	$<0.063 \mathrm{~mm}$	fine	$0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$	medium	$0.1 \mathrm{~mm}-2 \mathrm{~mm}$	coarse	2mm - 10 mm	very coarse	>10mm

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
13082950	BH01	0.50	Dark Brown	Sandy Clay	0.063-2.00 mm	Stones	Vegetation
13082951	BH06	0.50	Dark Brown	Sandy Clay	0.063-2.00 mm	Stones	Vegetation

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

GRO by GC-FID (S)

1-5\&*§§ Sample deviation (see appendix)		
Component	LOD/Units	Method
Methyl tertiary butyl ether (MTBE)	$<5 \mu \mathrm{~g} / \mathrm{kg}$	TM089
Benzene	$<10 \mu \mathrm{~g} / \mathrm{kg}$	TM089
Toluene	$<2 \mu \mathrm{~g} / \mathrm{kg}$	TM089
Ethylbenzene	$<6 \mu \mathrm{~g} / \mathrm{kg}$	TM089
m,p-Xylene	$<3 \mu \mathrm{~g} / \mathrm{kg}$	TM089
o-Xylene	$<9 \mu \mathrm{~g} / \mathrm{kg}$	TM089
sum of detected mpo xylene by GC	$<24 \mu \mathrm{~g} / \mathrm{kg}$	TM089
sum of detected BTEX by GC		

Customer Sample

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS
REF : BS EN 12457/2
Site Location
Natural Moisture Content (\%) 12.4
Dry Matter Content (\%)

Client Reference	
Mass Sample taken (kg)	0.101
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

89
Clongriffin

Case		Landfill Waste Acceptance Criteria Limits		
SDG	160312-101			
Lab Sample Number(s)	13082950			
Sampled Date	09-Mar-2016		Stable Non-reactive	
Customer Sample Ref.	BH01	Inert Waste Landfill	Hazardous Waste	Hazardous Waste Landfill
Depth (m)	0.50		Hazardous	
Solid Waste Analysis	Result			
Total Organic Carbon (\%)	0.423	3	5	6
Loss on Ignition (\%)	2.1	-	-	10
Sum of BTEX ($\mathrm{mg} / \mathrm{kg}$)	<0.024	6	-	-
Sum of 7 PCBs ($\mathrm{mg} / \mathrm{kg}$)	<0.021	1	-	-
Mineral Oil (mg/kg)	33.2	500	-	-
PAH Sum of 17 (mg/kg)	<10	100	-	-
pH (pH Units)	8.26	-	<6	-
ANC to pH 6 ($\mathrm{mol} / \mathrm{kg}$)	0.592	-	-	-
ANC to pH 4 ($\mathrm{mol} / \mathrm{kg}$)	5.36	-	-	-

Leach Test Information

Date Prepared	18-Mar-2016
pH (pH Units)	8.71
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	272.00
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.40
Volume Leachant (Litres)	0.889

[^4]| SDG: | 160312-101 | Location: | Clongriffin | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-66 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | Block 17 | Attention: | Stephen Letch | Superseded Report: |

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS
REF : BS EN 12457/2
Site Location
Natural Moisture Content (\%) 13.6
Dry Matter Content (\%) 88

Clongriffin

Client Reference	
Mass Sample taken (kg)	0.102
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Landfill Waste Acceptance
Criteria Limits

SDG	$160312-101$
Lab Sample Number(s)	13082951
Sampled Date	11-Mar-2016
Customer Sample Ref.	BH06
Depth (m)	0.50

Solid Waste Analysis	Result
Total Organic Carbon $(\%)$	0.693
Loss on Ignition $(\%)$	2.35
Sum of BTEX $(\mathrm{mg} / \mathrm{kg})$	<0.024
Sum of 7 PCBs $(\mathrm{mg} / \mathrm{kg})$	<0.021
Mineral Oil $(\mathrm{mg} / \mathrm{kg})$	34.1
PAH Sum of $17(\mathrm{mg} / \mathrm{kg})$	<10
$\mathrm{pH}(\mathrm{pH}$ Units $)$	10.8
ANC to pH $6(\mathrm{~mol} / \mathrm{kg})$	0.773
ANC to pH $4(\mathrm{~mol} / \mathrm{kg})$	4.53

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ${ }^{1}$	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step		
TM018	BS 1377: Part 31990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 \& 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 \& 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0580389243	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 \& 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

[^5]| SDG: | 160312-101 | Location: | Clongriffin | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-66 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | Block 17 | Attention: | Stephen Letch | Superseded Report: |

Test Completion Dates

Lab Sample No(s) Customer Sample Ref.	13082950	13082951
	вн01	вно6
AGS Ref. Depth Type		
	0.50	0.50
	SOLID	SOLID
ANC at pH 4 and ANC at pH 6	22-Mar-2016	22-Mar-2016
Anions by Kone (w)	21-Mar-2016	21-Mar-2016
CEN 10:1 Leachate (1 Stage)	18-Mar-2016	18-Mar-2016
CEN Readings	22-Mar-2016	22-Mar-2016
Dissolved Metals by ICP-MS	22-Mar-2016	22-Mar-2016
Dissolved Organic/Inorganic Carbon	22-Mar-2016	22-Mar-2016
Fluoride	22-Mar-2016	22-Mar-2016
GRO by GC-FID (S)	18-Mar-2016	18-Mar-2016
Loss on Ignition in soils	18-Mar-2016	18-Mar-2016
Mercury Dissolved	22-Mar-2016	22-Mar-2016
Mineral Oil	22-Mar-2016	22-Mar-2016
PAH Value of soil	22-Mar-2016	22-Mar-2016
PCBs by GCMS	20-Mar-2016	20-Mar-2016
pH	18-Mar-2016	18-Mar-2016
Phenols by HPLC (W)	22-Mar-2016	22-Mar-2016
Sample description	16-Mar-2016	16-Mar-2016
Total Dissolved Solids	22-Mar-2016	22-Mar-2016
Total Organic Carbon	18-Mar-2016	18-Mar-2016

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	160312-101	Location:	Clongriffin	Order Number:
Job:	D_SITEINV_NCS-66	Customer:	Site Investigations Ltd	Report Number:
Client Reference:	Block 17	Attention:	Stephen Letch	Superseded Report:

Appendix

1. Results are expressed on a dry weight basis (dried at $35^{\circ} \mathrm{C}$) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
9. NDP - No determination possible due to insufficient/unsuitable sample.
10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.
11. Results relate only to the items tested.
12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130\%, they are generally wider for volatiles analysis, 50-150\%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .
14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1 Container with Headspace provided for volatiles analysis

Incorrect container received

Deviation from method
Holding time exceeded before sample received
Samples exceeded holding time before presevation was performed
Sampled on date not provided
Sample holding time exceeded in laboratory
Sample holding time exceeded due to sampled on date
Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials \& Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Crysofie	WiteAsbestos
Anosie	BownAsbests
Coidalie	Bue Absesos
Fbras Adinotie	-
Fbrous Arthophylie	-
Fbrous Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 5
Survey Data

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator						
	Easting	Northing		Easting	Northing					
Boreholes										
BH01	323118.123	240638.640	8.76	723042.270	740663.454					
BH02	323097.224	240672.244	8.27	723021.376	740697.051					
BH03	323116.148	240695.461	7.73	723040.296	740720.263					
BH04	323099.089	240663.760	8.31	723023.240	740688.569					
BH05	323102.783	240687.139	8.05	723026.934	740711.943					
BH05A	323102.62	240685.842	8.00	723026.771	740710.646					
BH05B	323102.465	240684.183	7.98	723026.616	740708.987					
BH06	323095.397	240701.987	8.03	723019.549	740726.787					
BH06A	323096.612	240700.175	8.12	723020.764	740724.976					
		Trial Pits								
TP01	323090.748	240653.705	9.09	723014.901	740678.516					
TP02	323094.586	240690.232	8.92	723018.738	740715.035					
TP03	323105.247	240641.381	9.13	723029.397	740666.195					
TP04	323107.533	240680.195	7.96	723031.683	740705.000					
TP05	323120.563	240664.023	8.40	723044.710	740688.831					
TP06	323122.257	240683.248	7.91	723046.404	740708.052					

TP03

BH01

Client:	Gannon Homes Ltd
Engineer:	Waterman Moylan
Contractor:	Site Investigations Ltd

Plot E, Clongriffin, Dublin 13

Site Investigation Report

Prepared by:

Stephen Letch

Issue Date:	$12 / 05 / 2016$
Status	Final
Revision	0

1. Introduction 1
2. Fieldwork 1
3. Laboratory Testing 3
4. Ground Conditions 3
5. Recommendations and Conclusions 4

Appendices:

1. Cable Percussive Borehole Logs
2. Trial Pit Logs and Photographs
3. Dynamic Probe Logs
4. Soakaway Test Results
5. Laboratory Test Results
6. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) were appointed to complete a ground investigation at Plot E, Clongriffin, Dublin 13. The investigation was completed for the residential development of the site and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, trial pits, dynamic probes and soakaways. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification \& Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples recovered from the boreholes and trial pits and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were started and completed in April 2016 and comprised the following:

- 4 No. cable percussive boreholes
- 11 No. trial pits
- 11 No. dynamic probes
- 3 No. soakaways

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 4 No. locations using a Dando 150 rig and constructed a 200 mm diameter borehole. The boreholes terminated at the scheduled depth of 9.00 mbgl at each location. It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

In order to test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the N -Value with the 75 mm incremental blows listed in brackets (e.g. BH01
at 1.00 mbgl where $\mathrm{N}=15-(3,4,4,4))$. Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g. BH 01 at 7.50 mbg where $\mathrm{N}=50 / 260 \mathrm{~mm}-(12,12,14,12 / 35 \mathrm{~mm})$).

The logs are presented in Appendix 1.

2.2. Trial Pits

11 No. trial pits were completed using a wheeled excavator and were logged by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated and they were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

2.3. Dynamic Probes

Dynamic probes were carried out at 11 No. locations, adjacent to the trial pits, using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method comprising a 50 kg weight, 500 mm drop height and a 43.7 mm diameter $\left(90^{\circ}\right)$ cone. The number of blows required to drive the cone each 100 mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

$$
\begin{aligned}
& \text { DPH } \mathrm{N}_{100} \times 2.5=\text { SPT } \mathrm{N} \text { value (Granular Soils) } \\
& \mathrm{C}_{\mathrm{u}}=15 \times \text { DPH } \mathrm{N}_{100}+30 \mathrm{kPa} \text { (Cohesive Soils) }
\end{aligned}
$$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the shear strength of cohesive soils.

The probe results are presented in Appendix 3 and present the data both numerically and graphically.

2.4. Soakaway Tests

3 No. soakaway test were completed using a wheeled excavator and were logged by SIL geotechnical engineer. The soakaway test is used to identify possible areas for storm water drainage. The pit was filled with water and the level of the groundwater was recorded over
time. As stipulated by BRE Special Digest 365, the pit should be filled three times and the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall then the test is deemed to have failed and the area is unsuitable as a drainage area

The soakaway logs are presented in Appendix 4.

2.5. Surveying

Following the completion of all the fieldworks works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and the locations are shown on the site plan in Appendix 6.

3. Laboratory Testing

Geotechnical laboratory testing has been carried out on representative soil samples in accordance with BS 1377 (1990). Testing included:

- Moisture content
- Atterberg limits
- Particle size gradings
- pH and sulphate
- Chloride content
- Organic content

Environmental testing was completed by Alcontrol Laboratories Ltd. and consisted of the following:

- WAC Analysis

The laboratory test results are presented in Appendix 3.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile at BH 04 is shown overleaf. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- TOPSOIL.
- MADE GROUND: brown slightly sandy slightly gravelly silty clay with low cobble content.
- Firm brown grey sandy slightly gravelly silty CLAY.
- Medium dense grey brown slightly silty sandy GRAVEL.
- Very stiff grey slightly sandy slightly gravelly silty CLAY with low cobble content.

The overburden deposits are of glacial origin and the particle size gradings of the cohesive soils display characteristic well-graded 'straight-line' profiles for the glacial material. Fines contents (i.e. silt \& clay) from the gradings show the cohesive soils with 40% and 64% silt/clay and the Atterberg Limits tests show that silty CLAY dominates the site.

The boreholes and trial pits did record MADE GROUND in each location to a maximum depth of 2.60 mbgl at TP04 and TP08. This was described by the SIL Engineer as engineered fill with only a small amount of red brick and timber within the fill.

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was encountered in all the boreholes and this entered the holes close to when the GRAVEL stratum was encountered. The depth of strike varied from 3.00 mbgl at BH 04 to 5.00 mbgl at BH 02 . The water level rose during the drilling process and was standing between 1.00 mbgl and 2.00 mbgl when the boreholes were completed.

Groundwater was encountered in 2 of the 11 trial pits at depths ranging from 2.40 mbgl (TP05) to 2.60 mbgl (TP02). Both ingresses were recorded as a seepage into the pit.

5.0. Recommendations and Conclusions

Please note the following caveats:
The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Foundations

Due to the unknown depth of foundation and no longer term groundwater information, this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.

From the boreholes, MADE GROUND was encountered to a depth of 2.00 mbgl . This was described as engineered fill on site but it would be recommended that all foundations are placed on natural ground. This is to eliminate the possibility of differential settlement if foundations are placed on the MADE GROUND.

Below the MADE GROUND, the boreholes encountered firm/stiff grey brown slightly sandy slightly gravelly CLAY with low cobble content. Therefore, the SPT N-values at 2.00 mbgl vary from 13 ($\mathrm{BHO1}$) to 16 (BH 02). For the analysis an N -value of 15 was chosen for the purposes of design in this stratum, in accordance with Eurocode 7 (EC 7).

Using an equation proposed by Stroud and Butler, the SPT N -value can be used to calculate the shear strength and this is $\mathrm{Cu}=5 \mathrm{~N}$. Therefore, using the value of 15 , this indicates that the shear strength of the CLAY is $75 \mathrm{kN} / \mathrm{m}^{2}$. This can be used to calculate the allowable bearing capacity (ABC) and using a factor of safety of 3 an $A B C$ of $140 \mathrm{kN} / \mathrm{m}^{2}$ would be anticipated.

The trial pits on the site recorded MADE GROUND to a maximum depth of 2.60 mbgl and therefore it is important that any foundations are placed on natural ground.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- The foundation is to be 1 m wide.
- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of $19 \mathrm{kN} / \mathrm{m}^{3}$.
- Based on groundwater observations this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.
- Foundation formations should be inspected by a competent geotechnical engineer prior to construction so as to verify that the observations made during the ground investigation are consistent with the actual ground conditions at the time of construction.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However as the upper soil is MADE GROUND then regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period of time.

5.2. Groundwater

The caveats overleaf relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were 4 No. water strikes in the boreholes. These were between $3.00 \mathrm{mbgl}(\mathrm{BH} 04)$ and $5.00 \mathrm{mbgl}(\mathrm{BH} 02)$ and were encountered when the granular soils were encountered or just above the boundary. It would be anticipated that water ingresses into any excavation of the cohesive soil would be slight (as seen in TP02 and TP05) and only if the granular soils are encountered will the ingress rate increase.

There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based
on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations of the CLAY will be at depth and generally will be slow (as per TP02 and TP05). If the granular soils are encountered then the probability of water ingressing into the excavation increases, as does the likely rate of ingress.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Soakaway Tests

The graphs in Appendix 4 show that the areas where the soakaways were completed are unsuitable for soakaway design. The BRE Digest stipulates that the pit should half empty within 24 hrs, and extrapolation indicates this condition would not be satisfied. The test was terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation.

The unsuitability of the site for soakaways is further suggested by the soil descriptions of the materials in the area of the site where the soakaway was completed, i.e. clay and silt soils.

5.4. Contamination

Environmental testing was carried out on two samples from the investigation and the results are shown in Appendix 5 . For material to be removed from site, landfill acceptability testing (WAC) was carried out to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material would generally be able to be treated as Inert Waste. However, the sulphate result did exceed the Inert threshold and therefore discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only two samples were tested for analysis and although no major contamination was noted at the fieldwork locations, any localised contamination may have been missed. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.5. Aggressive Ground Conditions

The chemical tests results in Appendix 5 indicate a general pH value between 8.70 and 8.95, which is close to neutral and below the level of 9 , which could cause possible concern, therefore no special precautions are required.

The maximum value obtained for acid soluble sulphate was $117 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion $\left(\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2\right)$, the maximum value of $140 \mathrm{mg} / \mathrm{l}$ shows Class 1 conditions and no special precautions are required.

Appendix 1
Cable Percussive Borehole Logs

CONTRACT: Plot E			HOLE ID:	BH01
Client:	Gannon Homes	Co-ordinates:	E:722553.522	
Consultant:	Waterman Moylan		$\mathrm{N}: 741040.599$	
Site Address:	Clongriffin, Dublin 13	Elevation:	9.40 m.O.D.	
Boring Commenced:	13/04/2016	Hole Diameter:	200 mm	
Boring Completed:	13/04/2016	Drilled by:	J. Moriarty	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

CONTRACT: Plot E			HOLE ID:	BH03
Client:	Gannon Homes	Co-ordinates:	E:722553.776	
Consultant:	Waterman Moylan		$\mathrm{N}: 741011.527$	
Site Address:	Clongriffin, Dublin 13	Elevation:	8.73 m.O.D.	
Boring Commenced:	14/04/2016	Hole Diameter:	200 mm	
Boring Completed:	14/04/2016	Drilled by:	J. Moriarty	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

Appendix 2

Trial Pit Logs and Photographs

TP01 Sidewall

TP01 Spoil

TP02 Pit

TP02 Sidewall

TP02 Spoil

TP03 Pit

TP03 Sidewall

TP03 Spoil

TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Pit

TP05 Sidewall

TP05 Spoil

TP06 Pit

TP06 Sidewall

TP06 Spoil

TP07 Pit

TP07 Sidewall

TP07 Spoil

TP08 Pit

TP08 Sidewall

TP08 Spoil

TP09 Pit

TP09 Sidewall

TP09 Spoil

TP10 Pit

TP10 Sidewall

TP10 Spoil

TP11 Pit

TP11 Sidewall

TP11 Spoil

Appendix 3
Dynamic Probe Logs

PENNINE DYNAMIC PROBING

Appendix 4

Soakaway Test Results

SOAKAWAY TEST f-Value Calculations

SIL

SOAKAWAY TEST f-Value Calculations

SIL

Appendix 5

Laboratory Test Results

Classification Tests													
Client	Gannon Homes												
Site	Clongriffin - Block 17												
S.I. File No	5274/16												
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01)6108768 Email siltd@indigo.ie												
Report Date	28th April 2016												
Hole ID	Depth	Sample No	Lab Ref No.	Sample Type	Natural Moisture Content \%	Liquid Limit \%	Plastic Limit \%	Max. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Min. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Particle Density $\mathrm{Mg} / \mathrm{m}^{3}$	$\begin{gathered} \hline \% \text { passing } \\ 425 \mathrm{um} \end{gathered}$	Comments	Remarks C=Clay; M=Silt Plasticity: L=Low; I=Intermediate; H=High; V=Very High; E=Extremely High
BH01	3.50	JM10	16/408	B	11.6	37	23				83.5		CI
BH04	2.00	JM23	16/411	B	15.4	31	22				65.4		CL

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
		$\mathbf{0 . 0 6 3 0}$	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 2 0 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{7 5}$	100	$\mathbf{0 . 0 0 2 0}$	
$\mathbf{6 3}$	100		
$\mathbf{5 0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	97.5		
$\mathbf{1 4}$	96.3		
$\mathbf{1 0}$	95.2		
$\mathbf{6 . 3}$	93.3		
$\mathbf{5 . 0}$	92.4		
$\mathbf{2 . 3 6}$	90		
$\mathbf{2 . 0 0}$	89.4		
$\mathbf{1 . 1 8}$	87.5		
$\mathbf{0 . 6 0 0}$	85.4		
$\mathbf{0 . 4 2 5}$	83.5		
$\mathbf{0 . 3 0 0}$	80.5		
$\mathbf{0 . 2 1 2}$	76.8		
$\mathbf{0 . 1 5 0}$	72.7		
$\mathbf{0 . 0 6 3}$	64		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 11 \\
\hline \text { Sand, \% } & 25 \\
\hline \text { Clay / Silt, \% } & 64 \\
\hline
\end{array}
$$

Material description : slightly gravelly slightly sandy silty CLAY

Material description :	slightly gravelly slightly sandy silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt >35\% are classified as clay or silt

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
		\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
$\mathbf{7 5}$	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$\mathbf{5 0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	100		
$\mathbf{1 4}$	99.3		
$\mathbf{1 0}$	96		
$\mathbf{6 . 3}$	92.2		
$\mathbf{5 . 0}$	89.6		
$\mathbf{2 . 3 6}$	81.5		
$\mathbf{2 . 0 0}$	79.8		
$\mathbf{1 . 1 8}$	75.9		
$\mathbf{0 . 6 0 0}$	69.7		
$\mathbf{0 . 4 2 5}$	65.4		
$\mathbf{0 . 3 0 0}$	60.3		
$\mathbf{0 . 2 1 2}$	55.7		
$\mathbf{0 . 1 5 0}$	50.4		
$\mathbf{0 . 0 6 3}$	40		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 20 \\
\hline \text { Sand, \% } & 40 \\
\hline \text { Clay / Silt, \% } & 40 \\
\hline
\end{array}
$$

Material description : slightly gravelly sandy silty CLAY

Material description :	llightly gravelly sandy silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

Hole Id	Depth (mBGL)	Sample No	Lab Ref	pH Value	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ g / L	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ $\%$	Organic Content $\%$	Chloride ion Content (soil:water ratio 2:1) $\%$	\% passing 2 mm	Remarks

Carhugar
12th Lock Road
Lucan
Co. Dublin
Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date:

Customer:
Sample Delivery Group (SDG):
Your Reference:
Location:
Report No:

04 May 2016
D_SITEINV_NCS
160423-83

Plot E, Clongriffin
359485

We received 5 samples on Saturday April 23, 2016 and 5 of these samples were scheduled for analysis which was completed on Wednesday May 04, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Received Sample Overview

Lab Sample No(s)	Customer Sample Ref.	AGS Ref.	Depth (m)
13312248	BH01	1.50	
13312249	BH02	0.50	
13312250	BH04	Sampled Date	
13312246	TP01	1.00	
13312247	TP11	0.50	
	0.50	$21 / 04 / 2016$	

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	S59485

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Sample Descriptions

Grain Sizes

very fine	<0.063mm	fine	$0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$	medium	$0.1 \mathrm{~mm}-2 \mathrm{~mm}$	coarse	2mm-10mm	very coarse	>10mm

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
13312248	BH01	1.50	Dark Brown	Sandy Clay	0.063-2.00 mm	Stones	None
13312249	BH02	0.50	Dark Brown	Sandy Clay	0.063-2.00 mm	Stones	None
13312250	BH04	1.00	Dark Brown	Sandy Clay	0.063-2.00 mm	Stones	None
13312246	TP01	0.50	Dark Brown	Clay	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \end{gathered}$	Stones	N/A
13312247	TP11	0.50	Dark Brown	Clay	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \\ \hline \end{gathered}$	Stones	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions.

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Sup9485

GRO by GC-FID (S)

		GS Referenc
Component	LOD/Units	Method
Methyl tertiary butyl ether (MTBE)	<5 $\mu \mathrm{g} / \mathrm{kg}$	TM089
Benzene	<10 $\mu \mathrm{g} / \mathrm{kg}$	TM089
Toluene	<2 $\mu \mathrm{g} / \mathrm{kg}$	TM089
Ethylbenzene	<3 $\mu \mathrm{g} / \mathrm{kg}$	TM089
m,p-Xylene	<6 $\mu \mathrm{g} / \mathrm{kg}$	TM089
o-Xylene	<3 $\mu \mathrm{g} / \mathrm{kg}$	TM089
sum of detected mpo xylene by GC	<9 $\mu \mathrm{g} / \mathrm{kg}$	TM089
sum of detected BTEX by GC	<24 $\mu \mathrm{g} / \mathrm{kg}$	TM089

$$
\square \quad-\quad-
$$

TP01 TP11

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2
Site Location
Natural Moisture Content (\%)
Dry Matter Content (\%)
Plot E, Clongriffin
Client Reference

Mass Sample taken (kg)	0.098
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Landfill Waste Acceptance
Criteria Limits

SDG	$160423-83$
Lab Sample Number(s)	13312246
Sampled Date	$21-A p r-2016$
Customer Sample Ref.	TP01
Depth (m)	0.50

Solid Waste Analysis	Result
Total Organic Carbon $(\%)$	0.544
Loss on Ignition $(\%)$	1.44
Sum of BTEX $(\mathrm{mg} / \mathrm{kg})$	<0.024
Sum of 7 PCBs $(\mathrm{mg} / \mathrm{kg})$	<0.021
Mineral Oil $(\mathrm{mg} / \mathrm{kg})$	10.1
PAH Sum of $17(\mathrm{mg} / \mathrm{kg})$	<10
$\mathrm{pH}(\mathrm{pH}$ Units $)$	8.43
ANC to pH $6(\mathrm{~mol} / \mathrm{kg})$	0.63
ANC to pH $4(\mathrm{~mol} / \mathrm{kg})$	3.36

Leach Test Information

Date Prepared	28 -Apr-2016
pH (pH Units)	8.38
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	250.00
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	17.10
Volume Leachant (Litres)	0.893

[^6]| SDG: | 160423-83 | Location: | Plot E, Clongriffin | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-68 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference

Mass Sample taken $(\mathbf{k g})$	0.103
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Site Location
Natural Moisture Content (\%)
Dry Matter Content (\%)

Plot E, Clongriffin
14.9

87

Case		Landfill Waste Acceptance Criteria Limits		
SDG	160423-83			
Lab Sample Number(s)	13312247	Inert Waste Landfill	StableNon-reactiveHazardous Wastein Non-HazardousLandfill	Hazardous Waste Landfill
Sampled Date	21-Apr-2016			
Customer Sample Ref.	TP11			
Depth (m)	0.50			
Solid Waste Analysis	Result			
Total Organic Carbon (\%)	0.751	3	5	6
Loss on Ignition (\%)	2.73	-	-	10
Sum of BTEX (mg/kg)	<0.024	6	-	-
Sum of 7 PCBs (mg/kg)	<0.021	1	-	-
Mineral Oil ($\mathrm{mg} / \mathrm{kg}$)	3.35	500	-	-
PAH Sum of 17 (mg/kg)	<10	100	-	-
pH (pH Units)	8.52	-	>6	-
ANC to pH 6 (molkg)	0.584	-	-	-
ANC to pH 4 (molkg)	0.749	-	-	-

Eluate Analysis	Conc ${ }^{\text {n }}$ in 10:1 eluate (mg / l)		10:1 conc ${ }^{\text {n }}$ leached ($\mathrm{mg} / \mathrm{kg}$)		Limit values for compliance leaching test using BS EN 12457-3 at L/S $10 \mathrm{l} / \mathrm{kg}$		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.000863	<0.00012	0.00863	<0.0012	0.5	2	25
Barium	0.0139	<0.00003	0.139	<0.0003	20	100	300
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	1	5
Chromium	0.00166	<0.00022	0.0166	<0.0022	0.5	10	70
Copper	0.00228	<0.00085	0.0228	<0.0085	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0107	<0.00024	0.107	<0.0024	0.5	10	30
Nickel	0.00121	<0.00015	0.0121	<0.0015	0.4	10	40
Lead	0.000275	<0.00002	0.00275	<0.0002	0.5	10	50
Antimony	0.0011	<0.00016	0.011	<0.0016	0.06	0.7	5
Selenium	0.00154	<0.00039	0.0154	<0.0039	0.1	0.5	7
Zinc	0.00163	<0.00041	0.0163	<0.0041	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	<2	<2	<20	<20	1000	20000	50000
Total Dissolved Solids	77.7	<5	777	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	5.46	<3	54.6	<30	500	800	1000

Leach Test Information

Date Prepared	28-Apr-2016
pH (pH Units)	8.39
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	101.00
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	19.00
Volume Leachant (Litres)	0.887

[^7]| SDG: | 160423-83 | Location: | Plot E, Clongriffin | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-68 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | 359485 |

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample ${ }^{1}$	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step		
TM018	BS 1377: Part 31990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 \& 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 \& 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0580389243	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 \& 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

[^8]| SDG: | 160423-83 | Location: | Plot E, Clongriffin | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-68 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | 359485 |

Test Completion Dates

Lab Sample No(s)	13312248	13312249	13312250	13312246	13312247
Customer Sample Ref.	вн01	вно2	BH04	TP01	TP11
AGS Ref.					
Depth	1.50	0.50	1.00	0.50	0.50
Type	SOLID	SOLID	SOLID	SOLID	SOLID
ANC at pH4 and ANC at pH 6				28-Apr-2016	28-Apr-2016
Anions by Kone (w)				29-Apr-2016	29-Apr-2016
CEN 10:1 Leachate (1 Stage)				28-Apr-2016	28-Apr-2016
CEN Readings				29-Apr-2016	29-Apr-2016
Dissolved Metals by ICP-MS				04-May-2016	04-May-2016
Dissolved Organic/Inorganic Carbon				03-May-2016	03-May-2016
Fluoride				29-Apr-2016	29-Apr-2016
GRO by GC-FID (S)				28-Apr-2016	28-Apr-2016
Loss on Ignition in soils	04-May-2016	04-May-2016	04-May-2016	28-Apr-2016	28-Apr-2016
Mercury Dissolved				03-May-2016	03-May-2016
Mineral Oil				29-Apr-2016	29-Apr-2016
PAH Value of soil				27-Apr-2016	27-Apr-2016
PCBs by GCMS				28-Apr-2016	28-Apr-2016
pH				29-Apr-2016	29-Apr-2016
Phenols by HPLC (W)				03-May-2016	03-May-2016
Sample description	28-Apr-2016	28-Apr-2016	28-Apr-2016	25-Apr-2016	25-Apr-2016
Total Dissolved Solids				04-May-2016	04-May-2016
Total Organic Carbon				29-Apr-2016	29-Apr-2016

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	160423-83	Location:	Plot E, Clongriffin	Order Number:
Job:	D_SITEINV_NCS-68	Customer:	Site Investigations Ltd	39/A/16
Client Reference:		Attention:	Stephen Letch	Report Number:
Superseded Report:				

Appendix

1. Results are expressed on a dry weight basis (dried at $35^{\circ} \mathrm{C}$) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
9. NDP - No determination possible due to insufficient/unsuitable sample.
10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.
11. Results relate only to the items tested.
12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130\%, they are generally wider for volatiles analysis, 50-150\%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .
14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1 Container with Headspace provided for volatiles analysis

Incorrect container received

Deviation from method
Holding time exceeded before sample received
Samples exceeded holding time before presevation was performed
Sampled on date not provided
Sample holding time exceeded in laboratory
Sample holding time exceeded due to sampled on date
Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials \& Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Crysofie	WiteAsbestos
Anosie	BownAsbests
Coidalie	Bue Absesos
Fbras Adinotie	-
Fbrous Arthophylie	-
Fbrous Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 6
Survey Data

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator	
	Easting	Northing		Easting	Northing
Boreholes					
BH01	322629.267	241015.863	9.40	722553.522	741040.599
BH02	322667.052	240993.644	8.90	722591.299	741018.384
BH03	322629.521	240986.785	8.73	722553.776	741011.527
BH04	322648.763	240963.843	8.41	722573.013	740988.590
Trial Pits					
TP01	322626.230	241026.840	9.61	722550.486	741051.573
TP02	322616.335	241012.190	9.21	722540.593	741036.926
TP03	322639.808	241002.975	9.01	722564.061	741027.713
TP04	322652.966	241012.915	9.29	722577.216	741037.651
TP05	322604.354	240990.243	8.85	722528.614	741014.984
TP06	322634.270	240993.272	8.83	722558.524	741018.012
TP07	322658.270	240988.910	8.81	722582.519	741013.651
TP08	322686.025	240987.550	8.93	722610.268	741012.291
TP09	322654.892	240978.764	8.75	722579.141	741003.507
TP10	322632.075	240970.771	8.57	722556.329	740995.516
TP11	322665.343	240954.666	8.17	722589.590	740979.415
Soakaways					
SA01	322640.726	241018.861	9.53	722564.979	741043.596
SA02	322617.069	240982.307	8.72	722541.326	741007.050
SA03	322677.051	240972.623	8.37	722601.295	740997.368

Client:	Gannon Homes Ltd
Engineer:	Waterman Moylan
Contractor:	Site Investigations Ltd

Belltree Park, Clongriffin, Dublin 13

Site Investigation Report

Prepared by:

Stephen Letch

Issue Date:	$19 / 07 / 2016$
Status	Final
Revision	0

1. Introduction 1
2. Fieldwork 1
3. Laboratory Testing 3
4. Ground Conditions 3
5. Recommendations and Conclusions 4

Appendices:

1. Cable Percussive Borehole Logs
2. Trial Pit Logs and Photographs
3. Dynamic Probe Logs
4. Soakaway Test Results
5. Laboratory Test Results
6. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) were appointed to complete a ground investigation at Belltree Park, Clongriffin, Dublin 13. The investigation was completed for the residential development of the site and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, trial pits, dynamic probes, soakaways and California Bearing Ratio tests. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification \& Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were started and completed in June 2016 and comprised the following:

- 10 No. cable percussive boreholes
- 28 No. trial pits
- 28 No. dynamic probes
- 2 No. soakaways
- 8 No. California Bearing Ratio tests

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 10 No. locations using a Dando 150 rig and constructed a 200 mm diameter borehole. The boreholes terminated at the scheduled depth of 6.00 mbgl at each location. It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

In order to test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone $\left(60^{\circ}\right)$ (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the N -Value with the 75 mm incremental blows listed in brackets (e.g. BH01
at 1.00 mbgl where $\mathrm{N}=13-(3,3,3,4))$. Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g. BH03 at 5.00 mbg where $\mathrm{N}=50 / 5 \mathrm{~mm}-(50 / 5 \mathrm{~mm})$).

The logs are presented in Appendix 1.

2.2. Trial Pits

28 No. trial pits were completed using a wheeled excavator and were logged by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated and they were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

2.3. Dynamic Probes

Dynamic probes were carried out at 28 No. locations, adjacent to the trial pits, using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method comprising a 50 kg weight, 500 mm drop height and a 43.7 mm diameter $\left(90^{\circ}\right)$ cone. The number of blows required to drive the cone each 100 mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

$$
\begin{aligned}
& \text { DPH } \mathrm{N}_{100} \times 2.5=\text { SPT } \mathrm{N} \text { value (Granular Soils) } \\
& \mathrm{C}_{\mathrm{u}}=15 \times \text { DPH } \mathrm{N}_{1} 00+30 \mathrm{kPa} \text { (Cohesive Soils) }
\end{aligned}
$$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the shear strength of cohesive soils.

The probe results are presented in Appendix 3 and present the data both numerically and graphically.

2.4. Soakaway Tests

2 No. soakaway tests were completed using a wheeled excavator and were logged by SIL geotechnical engineer. The soakaway test is used to identify possible areas for storm water drainage. The pit was filled with water and the level of the groundwater was recorded over
time. As stipulated by BRE Special Digest 365, the pit should be filled three times and the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall then the test is deemed to have failed and the area is unsuitable as a drainage area

The soakaway logs are presented in Appendix 4.

2.5. California Bearing Ratio tests

At 8 No. locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 5 with the laboratory test data.

2.6. Surveying

Following the completion of all the fieldworks works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and the locations are shown on the site plan in Appendix 6.

3. Laboratory Testing

Geotechnical laboratory testing has been carried out on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 2 No. Moisture content
- 2 No. Atterberg limits
- 2 No. Particle size gradings
- 3 No. pH and sulphate
- 3 No. Chloride content
- 3 No. Organic content

Environmental testing was completed by Alcontrol Laboratories Ltd. and consisted of the following:

- 2 No. WAC Analysis

The laboratory test results are presented in Appendix 5.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile at BH06 is shown below. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- MADE GROUND: brown sandy slightly gravelly silty clay.
- Firm becoming stiff grey slightly sandy silty CLAY.
- Stiff brown sandy slightly gravelly silty CLAY with low cobble content.
- Stiff becoming very stiff dark grey sandy slightly gravelly silty CLAY with low cobble content.

MADE GROUND was encountered in 10 No. boreholes to a maximum depth of 2.00 mbgl at BH04 and BH10 and 22 No. trial pits to 1.80 mbgl at TP28. TP10 did encounter MADE GROUND to 2.50 mbgl and this was over a possible land drain so would be the trench for the drain.

The overburden deposits are of glacial origin and the particle size gradings of the cohesive soils display characteristic poorly-graded profiles for the glacial material. Fines contents (i.e. silt \& clay) from the gradings show the cohesive soils with 40% and 64% silt/clay and the Atterberg Limits tests show that silty CLAY dominates the site.

The dynamic probes did show that the areas tested at DP14, DP15, DP18, DP19,DP24, DP25, DP26 and DP27 showed very low blow counts of 1 or less to deeper depths than the rest of the probes. The blow counts do not increase until between 2.10 m (DP15) to 2.90 m (DP14 and DP24).

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was encountered in four of the boreholes at depths ranging from $2.00 \mathrm{~m}(\mathrm{BH} 02$ and BH 08$)$ to 4.50m (BH07). Groundwater was encountered in 12 of the 28 trial pits with the depth ranging from 1.60 m (TP27) to 3.00 m (TP25) and the rate of ingress was generally slow although a medium ingress was recorded at TP06 and a rapid ingress at TP10.

5.0. Recommendations and Conclusions

Please note the following caveats:
The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material
between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report. Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Foundations

5.1.1. Shallow Foundations

Due to the unknown depth of foundation and no longer term groundwater information, this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations. Also, MADE GROUND was encountered up to 2.00 mbgl and it would be recommended that the foundations be placed on the natural stratum. Therefore all bearing capacities shown below are for natural ground.

The boreholes encountered firm/stiff brown slightly sandy slightly gravelly CLAY with low cobble content. The SPT N-values at 1.00 mbgl vary from 11 (at 4 No. Boreholes) to 19 (BH 03). For the analysis an N -value of 11 was chosen for the purposes of design in this stratum, in accordance with Eurocode 7 (EC 7).

Using an equation proposed by Stroud and Butler, the SPT N-value can be used to calculate the shear strength and this is $\mathrm{Cu}=5 \mathrm{~N}$. Therefore, using the value of 11 , this indicates that the shear strength of the CLAY is $55 \mathrm{kN} / \mathrm{m}^{2}$. This can be used to calculate the allowable bearing capacity (ABC) and using a factor of safety of 3 an ABC of $100 \mathrm{kN} / \mathrm{m}^{2}$ would be anticipated.

If higher capacities are required then using the SPT N -values at 2.00 mbgl , an ABC of $140 \mathrm{kN} / \mathrm{m}^{2}$ would be anticipated at this depth. Alternatively foundations could be placed on the stiff black slightly sandy slightly gravelly silty CLAY. This was encountered at various depths from $2.50 \mathrm{mbgl}(\mathrm{BH} 01$ and BH 02) to $4.00 \mathrm{mbgl}(\mathrm{BH} 05$ and BH 07$)$ and showed an increase in SPT N-values from 23 ($\mathrm{BH} 02, \mathrm{BH} 04$ and BH 06 at 3.00 mbgl) to 27 (BH 05 at 4.00 mbgl). Using an SPT value of 23 at 3.00 mbgl , the shear strength of $115 \mathrm{kN} / \mathrm{m}^{2}$ would suggest that an allowable bearing capacity of $215 \mathrm{kN} / \mathrm{m}^{2}$ could be used when this strata is encountered.

It should be noted that although the boreholes showed no noticeable soft spots across the site the dynamic probes did record lower blow counts at 8 No. locations. It would therefore be imperative that foundation formations are inspected by a competent geotechnical engineer prior to construction so as to verify that the observations made during the ground investigation are consistent with the actual ground conditions at the time of construction.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- The foundation is to be 1 m wide.
- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of $19 \mathrm{kN} / \mathrm{m}^{3}$.
- Based on groundwater observations this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable especially in MADE GROUND. Temporary support should be used on any excavation that will be left open for an extended period of time.

5.1.2. Piled Foundations

Due to the lower than anticipated bearing capacities and the possibility of soft spots in the South East part of the site then deeper foundations may be required. The following information is for guidance for a pile designer.

No loadings of any structures have been provided for this report and therefore all the information provided is to be used for guidance purposes only and a piling contractor or Temporary Works Designer (TWD) should be consulted to provide the most cost effective pile design.

5.1.2.1. Applicable Pile Types

This section discusses a number of possible piling solutions frequently used in Ireland to support heavily loaded structures. The pile designer or TWD should satisfy themselves that the piling platform is adequate to support the piling rigs to be used on the site. All concreted
piles (and open boreholes) should be protected to prevent operatives and others from falling into the hole.

5.1.2.2. Driven Pre-Cast or Steel Piles

The boreholes undertaken in all phases of this project have indicated the presence of significant proportions of cobbles and boulders within the glacial strata.

Pile breakage, false set, non-vertical piles and short piles may result when driving piles in these strata, requiring additional piles to be installed. The relocation of these additional piles may require redesign of pile caps that might affect the project programme. Further, integrity testing cannot always verify the structural integrity of piles, leaving a level of uncertainty with the installed piles.

For these reasons driven piles are not considered appropriate for the ground conditions encountered.

5.1.2.3. Bored (drilled) Cast-in-Place Concrete Piles

Bored piles are frequently used in ground conditions similar to those encountered on site. Due to the nature of this boring (drilling) equipment, cobbles, boulders, granular and cohesive soil strata can be penetrated successfully. However, advancing piles using this method is relatively slow.

Piling Contractors using this method frequently advance a number of pile holes prior to concreting for efficiency purposes. If this approach is adopted it is recommended that all unconcreted bores be protected from collapse by leaving the casings in place until the concrete is poured and reinforcing in place.

The pile designer should consider the hazard of an open bore as part of the piling risk assessment and the possibility of an operative falling into the open hole.

Pile lengths and therefore pile capacities are limited by the torque of each particular piling machine. We would recommend that a requirement be made that the selected rig can successfully bore well beyond the final pile design length.

5.1.2.4. Continuous Flight Auger (CFA) Cast-in-Place Concrete Piles

CFA, along with bored piles, are the two most common methods of installing heavily loaded piles in Ireland. The CFA method most commonly used is the Hollow-Stem Auger, which allows concrete to be pumped under pressure to the bottom of the drilled hole while the annulus of the hole is stabilised by the auger.

The depth that CFA rigs can bore is generally limited by two items:

1. The capacity (torque) of the rig
2. The mast height. (Sometimes using a longer Kelly Bar can extend this.)

The piling contractor should give confirmation that their equipment is capable of advancing through the hard strata, potentially laden with cobbles and boulders, encountered on the site.

We would also recommend that a requirement be made that the selected rig can successfully bore well below the final pile design length. This makes allowance for some unforeseen ground conditions requiring deeper piles.

5.1.2.5. Pile Testing

Piles should be tested in order to determine their actual constructed capacity and to verify their structural integrity. Integrity testing should also be undertaken on selected piles. Consideration should be given to dynamic testing of selected piles.

5.1.2.5.1 Static Load Testing

The actual pile lengths determined by the pile designer should be verified as adequate prior to the installation of contract piles by the use of sacrificial (preliminary) piles. Therefore sacrificial piles should be installed and tested to destruction and their performance evaluated to allow changes in pile design, usually changes in length, if required.

A minimum of one sacrificial pile should be installed in each of the dominant layers where piles are to be supported namely the stiff to very stiff glacial till.

Along with sacrificial piles it is good practice to test $1+1 \%$ of contract piles to be installed across the site where conditions are uniform across the site. The number of piles tested should be increased to take account of the variation on ground conditions across this site.

5.1.2.5.2. Dynamic Load Testing

Consideration should be given to the use of dynamic testing of contract and sacrificial piles. CASE testing and CAPWAP analysis should be considered with a minimum of 5% contract piles being CASE tested and 20% of the CASE tested piles having a CAPWAP analysis.

5.1.2.5.3 Integrity Testing of Piles

Consideration should be given to integrity testing of all contract and sacrificial piles -100% of piles to be tested. Any of the following could be considered:

- Impulse method
- Sonic Echo, transient dynamic steady state vibration method
- Transient dynamic response (frequency response) method, with simulations and impedance profiles carried out on piles having anomalous results
- Sonic coring (logging) method
- Statmamic method

5.2. Groundwater

The caveats overleaf relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.
Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.
Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were 4 No . water strikes in the boreholes and 12 No . strikes in the trial pits. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations will generally be slow.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Soakaway Tests

The graphs in Appendix 4 show that the areas where the soakaways were completed are unsuitable for soakaway design. The BRE Digest stipulates that the pit should half empty within 24 hrs , and extrapolation indicates this condition would not be satisfied. The test was
terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation.

The unsuitability of the site for soakaways is further suggested by the soil descriptions of the materials in the area of the site where the soakaway was completed, i.e. clay and silt soils.

5.4. Pavement Design

The summary of the CBR test results in Appendix 5 indicates values generally of 3.7% or more. The CBR tests samples were collected at 0.50 mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

5.5. Contamination

Environmental testing was carried out on two samples from the investigation and the results are shown in Appendix 5. For material to be removed from site, landfill acceptability testing (WAC) was carried out to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material would generally be able to be treated as Inert Waste. However discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only two samples were tested for analysis and although no major contamination was noted at the fieldwork locations, any localised contamination may have been missed. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.6. Aggressive Ground Conditions

The chemical tests results in Appendix 5 indicate a general pH value between 8.42 and 8.95, which is close to neutral and below the level of 9 , which could cause possible concern, therefore no special precautions are required.

The maximum value obtained for acid soluble sulphate was $112 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion $\left(\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2\right)$, the maximum value of $134 \mathrm{mg} / /$ shows Class 1 conditions and no special precautions are required.

Appendix 1
Cable Percussive Borehole Logs

CONTRACT: Belltree Park			HOLE ID:	BH05
Client:	Gannon Homes	Co-ordinates:	E:722706.539	
Consultant:	Waterman Moylan		N:741111.149	
Site Address:	Clongriffin, Dublin 13	Elevation:	8.81 m.O.D.	
Boring Started:	14/06/2016	Hole Diameter:	200 mm	
Boring Completed:	14/06/2016	Drilled by:	J. Moriarty	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

CONTRACT: Belltree Park								HOLE ID:		BH	06	
Client: Consultant: Site Address: Boring Started: Boring Completed: Rig Type:	Gannon Homes Waterman Moylan Clongriffin, Dublin 13 13/06/2016 13/06/2016 Dando 150				Co-ordinates:			E:722695.453				
					Waterman Moylan			N:741082.519				
					Elevation:			8.08 m.O.D.				
					Hole Diameter: 200 mm							
					Drilled by:			J. Moriarty				
						gged by		S. Letch		Sheet 1	1 of 1	
DESCRIPTION OF STRATA				$\begin{aligned} & \mathbf{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$		Samples/Tests			Progress/Water			
			Type			$\begin{array}{\|l\|l\|} \hline \text { Depth } \\ (\mathrm{m}) \end{array}$	Ref No.	$\left\|\begin{array}{c} \text { Hole } \\ \text { Depth } \\ (\mathrm{m}) \end{array}\right\|$	Date	Water Depth (m)		
MADE GROUND: brown sandy slightly gravelly silty clay.				0.00		8.08		$\begin{aligned} & 1.00 \\ & 1.00 \\ & \\ & \\ & 2.00 \\ & 2.00 \end{aligned}$	$\begin{gathered} \mathrm{JM} 25 \\ \mathrm{~N}=12-(3,3,3,3) \end{gathered}$	6.00	${ }^{13 / 06 / 2016} \neq{ }^{3.50}$	
Firm becoming stiff grey slightly sandy silty CLAY.					7.58							
Stiff brown sandy slightly gravelly silty CLAY with low cobble content. Gravel is angular to subangular, fine to coarse of limestone. Cobbles are angular to subangular of limestone.			${ }^{2.30}$		5.78							
Stiff becoming very stiff dark grey sandy slightly gravelly silty CLAY with low cobble content. Gravel is angular to subangular, fine to coarse of limestone. Cobbles are angular to subangular of limestone.			3.00		5.08	$\left\lvert\, \begin{gathered} \mathrm{B} \\ \mathrm{SPT}(\mathrm{C}) \end{gathered}\right.$	$\begin{aligned} & 3.00 \\ & 3.00 \end{aligned}$	$\begin{gathered} \mathrm{JM} 27 \\ \mathrm{~N}=23-(5,6,6,6) \end{gathered}$				
						SPT(C) ${ }_{\text {S }}$	$\begin{aligned} & 4.00 \\ & 4.00 \end{aligned}$ $\begin{aligned} & 5.00 \\ & 5.00 \end{aligned}$	$\begin{gathered} \mathrm{JM} 28 \\ \mathrm{~N}=31-(7,7,7,10) \end{gathered}$ $\begin{gathered} \mathrm{JM} 29 \\ \mathrm{~N}=33-(8,8,8,9) \end{gathered}$				
Borehole terminated at scheduled depth.					2.08	$\begin{gathered} \mathrm{B} \\ \mathrm{SPT}(\mathrm{C}) \end{gathered}$	$\begin{aligned} & 6.00 \\ & 6.00 \end{aligned}$	$\begin{gathered} \text { JM30 } \\ \mathrm{N}=40-(8,8,10,14) \end{gathered}$	13/06/2016		3.50(E)	
									ration ration th th 20m (E)nd (S)tart	Test (Split Test (Cone) ins after s f shift of shift	Spoon) trike	

Appendix 2

Trial Pit Logs and Photographs

TP01 Pit

TP01 Sidewall

TP01 Spoil

TP02 Pit

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Pit

TP05 Sidewall

TP05 Spoil

TP06 Pit

TP06 Sidewall

TP06 Spoil

TP07 Pit

TP07 Sidewall

TP07 Spoil

TP08 Pit

TP08 Sidewall

TP08 Spoil

TP09 Pit

TP09 Sidewall

TP09 Spoil

TP10 Pit

TP10 Sidewall

TP10 Spoil

TP11 Pit

TP11 Sidewall

TP11 Spoil

TP12 Pit

TP12 Spoil

TP13 Pit

TP13 Sidewall

TP13 Spoil

TP14 Pit

TP14 Sidewall

TP14 Spoil

TP15 Pit

TP15 Sidewall

TP15 Spoil

TP16 Pit

TP16 Sidewall

TP16 Spoil

TP17 Pit

TP17 Sidewall

TP17 Spoil

TP18 Pit

TP18 Sidewall

TP18 Spoil

TP19 Pit

TP19 Sidewall

TP19 Spoil

TP20 Pit

TP20 Sidewall

TP20 Spoil

TP21 Pit

TP21 Sidewall

TP21 Spoil

TP22 Pit

TP22 Sidewall

TP22 Spoil

TP23 Pit

TP23 Sidewall

TP23 Spoil

TP24 Pit

TP24 Sidewall

TP24 Spoil

TP25 Pit

TP25 Sidewall

TP25 Spoil

TP26 Pit

TP26 Sidewall

TP26 Spoil

TP27 Pit

TP27 Sidewall

TP27 Spoil

TP28 Pit

TP28 Sidewall

TP28 Spoil

Appendix 3
Dynamic Probe Logs

PENNINE DYNAMIC PROBING

Appendix 4

Soakaway Test Results

Appendix 5

Laboratory Test Results

Classification Tests													
Client	Gannon Homes												
Site	Belltree Park, Clongriffin												
S.I. File No	5294/16												
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email siltd@indigo.ie												
Report Date	14th July 2016												
Hole ID	Depth	Sample No	Lab Ref No.	Sample Type	Natural Moisture Content \%	Liquid Limit \%	Plastic Limit \%	Max. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Min. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Particle Density $\mathrm{Mg} / \mathrm{m}^{3}$	$\begin{array}{\|c\|} \hline \text { \% passing } \\ \text { 425um } \end{array}$	Comments	Remarks C=Clay; M=Silt Plasticity: L=Low; I=Intermediate; $\mathbf{H}=\mathrm{High}$; V=Very High; E=Extremely High
BH02	1.00	JM04	16/576	B	12.4	34	24				42.6		CL/ML
BH09	2.50	JM16	16/578	B	13.6	33	22				65.4		CL

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{5}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	100		
$\mathbf{1 4}$	97.3		
$\mathbf{1 0}$	95.5		
$\mathbf{6 . 3}$	87.9		
$\mathbf{5 . 0}$	83.2		
$\mathbf{2 . 3 6}$	69.8		
$\mathbf{2 . 0 0}$	67.5		
$\mathbf{1 . 1 8}$	58.4		
$\mathbf{0 . 6 0 0}$	46.7		
$\mathbf{0 . 4 2 5}$	42.6		
$\mathbf{0 . 3 0 0}$	38.8		
$\mathbf{0 . 2 1 2}$	34.7		
$\mathbf{0 . 1 5 0}$	30.5		
$\mathbf{0 . 0 6 3}$	21		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 33 \\
\hline \text { Sand, \% } & 47 \\
\hline \text { Clay / Silt, \% } & 21 \\
\hline
\end{array}
$$

Material description : slightly gravelly sandy SILT/CLAY
BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{5}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	97.8		
$\mathbf{1 4}$	94.4		
$\mathbf{1 0}$	91.8		
$\mathbf{6 . 3}$	86.3		
$\mathbf{5 . 0}$	84.1		
$\mathbf{2 . 3 6}$	77		
$\mathbf{2 . 0 0}$	75.8		
$\mathbf{1 . 1 8}$	71.1		
$\mathbf{0 . 6 0 0}$	65.7		
$\mathbf{0 . 4 2 5}$	62.9		
$\mathbf{0 . 3 0 0}$	59.1		
$\mathbf{0 . 2 1 2}$	54.6		
$\mathbf{0 . 1 5 0}$	49.7		
$\mathbf{0 . 0 6 3}$	41		

Cobbles, \%	0
Gravel, \%	24
Sand, \%	35
Clay / Silt, \%	41

Material description :	slightly gravelly sandy silty CLAY
Remarks :	$\begin{array}{l}\text { Soils with clay or silt content between } 15 \%-35 \% \text { can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. } \\ \text { Where material is for re-use and therefore disturbed, only soils with clay or silt >35\% are classified as clay or silt }\end{array}$

_Paddy McGonagle

Hole Id	Depth (mBGL)	Sample No	Lab Ref	pH Value	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ g / L	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ $\%$	Organic Content $\%$	Chloride ion Content (soil:water ratio 2:1) $\%$	\% passing 2 mm	Remarks

Carhugar
12th Lock Road
Lucan
Co. Dublin
Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date:

Customer:
Sample Delivery Group (SDG):
Your Reference:

Location:	Beltree Park
Report No:	368315

Report No:

09 July 2016
D_SITEINV_NCS
160630-18

Beltree Park
368315

We received 2 samples on Wednesday June 29, 2016 and 2 of these samples were scheduled for analysis which was completed on Saturday July 09, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	$160630-18$	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Su8315

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Sample Descriptions

Grain Sizes

very fine	$<0.063 \mathrm{~mm}$	fine	$0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$	medium	$0.1 \mathrm{~mm}-2 \mathrm{~mm}$	coarse	2mm - 10 mm	very coarse	>10mm

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
13681360	TP06	0.50	Dark Brown	Silt Loam	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \\ \hline \end{gathered}$	Stones	Vegetation
13681361	TP13	0.50	Dark Brown	Silt Loam	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \end{gathered}$	Stones	Vegetation

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample.

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	R6/A/16
Client Reference:		Attention:	Stephen Letch	Report Number:
Superseded Report:				

GRO by GC-FID (S)

1-5\&*§@ Sample deviation (see appendix)	AGS Reference		速	
Component	LOD/Units	Method		
Methyl tertiary butyl ether (MTBE)	$<5 \mu \mathrm{~g} / \mathrm{kg}$	TM089	<5 \#	<5

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference

Mass Sample taken $(\mathbf{k g})$	0.100
Mass of dry sample $\mathbf{(k g)}$	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Site Location
Natural Moisture Content (\%)
Dry Matter Content (\%)

Beltree Park
10.8
90.3

Case		Landfill Waste Acceptance Criteria Limits		
SDG	160630-18			
Lab Sample Number(s)	13681360	Inert Waste Landfill	StableNon-ractiveHazardous Wastein Non-HazardousLandfill	Hazardous Waste Landfill
Sampled Date	27-Jun-2016			
Customer Sample Ref.	TP06			
Depth (m)	0.50			
Solid Waste Analysis	Result			
Total Organic Carbon (\%)	0.86	3	5	6
Loss on Ignition (\%)	2.83	-	-	10
Sum of BTEX ($\mathrm{mg} / \mathrm{kg}$)	0.0771	6	-	-
Sum of 7 PCBs (mg/kg)	<0.021	1	-	-
Mineral Oil (mg/kg)	88.2	500	-	-
PAH Sum of 17 (mg/kg)	<10	100	-	-
pH (pH Units)	8.56	-	>	-
ANC to pH 6 (mol/kg)	0.611	-	-	-
ANC to pH 4 (molkg)	4.13	-	-	-

Eluate Analysis	Conc ${ }^{\text {n }}$ in 10:1 eluate (mg / l)		10:1 conc ${ }^{\text {n }}$ leached ($\mathrm{mg} / \mathrm{kg}$)		Limit values for compliance leaching test using BS EN 12457-3 at L/S 10 I/kg		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.000652	<0.00012	0.00652	<0.0012	0.5	2	25
Barium	0.0262	<0.00003	0.262	<0.0003	20	100	300
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	1	5
Chromium	0.00151	<0.00022	0.0151	<0.0022	0.5	10	70
Copper	0.00149	<0.00085	0.0149	<0.0085	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.0106	<0.00024	0.106	<0.0024	0.5	10	30
Nickel	0.00131	<0.00015	0.0131	<0.0015	0.4	10	40
Lead	0.000069	<0.00002	0.00069	<0.0002	0.5	10	50
Antimony	0.00106	<0.00016	0.0106	<0.0016	0.06	0.7	5
Selenium	0.00268	<0.00039	0.0268	<0.0039	0.1	0.5	7
Zinc	0.000468	<0.00041	0.00468	<0.0041	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	29.7	<2	297	<20	1000	20000	50000
Total Dissolved Solids	107	<5	1070	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	06-Jul-2016
pH (pH Units)	8.62
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	133.00
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	12.50
Volume Leachant (Litres)	0.890

[^9]| SDG: | 160630-18 | Location: | Beltree Park | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-80 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference

Mass Sample taken (kg)	0.100
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Site Location
Natural Moisture Content (\%)
Dry Matter Content (\%)

Beltree Park
10.9
90.2

Case		Landfill Waste Acceptance Criteria Limits		
SDG	160630-18			
Lab Sample Number(s)	13681361	Inert Waste Landfill	StableNon-ractiveHazardous Wastein Non-HazardousLandfill	Hazardous Waste Landfill
Sampled Date	27-Jun-2016			
Customer Sample Ref.	TP13			
Depth (m)	0.50			
Solid Waste Analysis	Result			
Total Organic Carbon (\%)	0.575	3	5	6
Loss on Ignition (\%)	2.02	-	-	10
Sum of BTEX ($\mathrm{mg} / \mathrm{kg}$)	<0.024	6	-	-
Sum of 7 PCBs (mg/kg)	<0.021	1	-	-
Mineral Oil (mg/kg)	23	500	-	-
PAH Sum of 17 (mg/kg)	<10	100	-	-
pH (pH Units)	8.59	-	>	-
ANC to pH 6 (mol/kg)	0.565	-	-	-
ANC to pH 4 (molkg)	4.86	-	-	-

Leach Test Information

Date Prepared	06-Jul-2016
pH (pH Units)	8.64
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	126.00
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	16.00
Volume Leachant (Litres)	0.890

[^10]| SDG: | 160630-18 | Location: | Beltree Park | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-80 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step		
TM018	BS 1377: Part 31990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 \& 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 \& 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0580389243	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 \& 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

[^11]| SDG: | 160630-18 | Location: | Beltree Park | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-80 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Test Completion Dates

Lab Sample No(s)		
	13681360	13681361
	TP06	TP13
AGS Ref. Depth Type		
	0.50	0.50
	SOLID	SOLID
ANC at pH 4 and ANC at pH 6	08-Jul-2016	08-Jul-2016
Anions by Kone (w)	08-Jul-2016	08-Jul-2016
CEN 10:1 Leachate (1 Stage)	06-Jul-2016	06-Jul-2016
CEN Readings	07-Jul-2016	07-Jul-2016
Dissolved Metals by ICP-MS	08-Jul-2016	08-Jul-2016
Dissolved Organic/Inorganic Carbon	08-Jul-2016	08-Jul-2016
Fluoride	08-Jul-2016	08-Jul-2016
GRO by GC-FID (S)	08-Jul-2016	08-Jul-2016
Loss on Ignition in soils	08-Jul-2016	08-Jul-2016
Mercury Dissolved	08-Jul-2016	08-Jul-2016
Mineral Oil	09-Jul-2016	09-Jul-2016
PAH Value of soil	07-Jul-2016	07-Jul-2016
PCBs by GCMS	08-Jul-2016	08-Jul-2016
pH	07-Jul-2016	07-Jul-2016
Phenols by HPLC (W)	08-Jul-2016	08-Jul-2016
Sample description	06-Jul-2016	06-Jul-2016
Total Dissolved Solids	08-Jul-2016	08-Jul-2016
Total Organic Carbon	08-Jul-2016	08-Jul-2016

ALcontrol Laboratories

CERTIFICATE OF ANALYSIS

SDG:	160630-18	Location:	Beltree Park	Order Number:
Job:	D_SITEINV_NCS-80	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Appendix

1. Results are expressed on a dry weight basis (dried at $35^{\circ} \mathrm{C}$) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
9. NDP - No determination possible due to insufficient/unsuitable sample.
10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.
11. Results relate only to the items tested.
12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are 70-130\%, they are generally wider for volatiles analysis, 50-150\%. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .
14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
20. For the BSEN 12457-3 two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1 Container with Headspace provided for volatiles analysis

Incorrect container received

Deviation from method
Holding time exceeded before sample received
Samples exceeded holding time before presevation was performed
Sampled on date not provided
Sample holding time exceeded in laboratory
Sample holding time exceeded due to sampled on date
Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials \& Soils

The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Crysofie	WiteAsbestos
Anosie	BownAsbestos
Coidatie	BueAsbesos
Fbrous Adinotie	-
Fbrous Arthophylie	-
Fbras Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 6
Survey Data

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator	
	Easting	Northing		Easting	Northing
Boreholes					
BH01	322682.046	241116.699	9.09	722606.291	741141.412
BH02	322723.693	241101.730	8.78	722647.929	741126.446
BH03	322658.486	241068.217	9.18	722582.735	741092.941
BH04	322704.205	241038.878	8.69	722628.444	741063.608
BH05	322782.316	241086.430	8.81	722706.539	741111.149
BH06	322771.228	241057.793	8.08	722695.453	741082.519
BH07	322780.166	241027.752	8.87	722704.389	741052.484
BH08	322842.905	241068.667	8.04	722767.115	741093.390
BH09	322816.339	241004.726	8.50	722740.554	741029.463
BH10	322836.012	240973.504	7.72	722760.222	740998.247
Trial Pits					
TP01	322685.933	241141.507	9.30	722610.177	741166.215
TP02	322720.797	241129.362	9.06	722645.034	741154.072
TP03	322750.057	241121.476	8.82	722674.287	741146.188
TP04	322706.163	241109.601	9.14	722630.403	741134.316
TP05	322671.369	241103.974	8.95	722595.616	741128.690
TP06	322692.422	241092.972	8.93	722616.664	741117.690
TP07	322717.886	241072.891	8.72	722642.123	741097.614
TP08	322670.883	241060.687	9.15	722595.130	741085.413
TP09	322647.774	241059.050	9.39	722572.025	741083.776
TP10	322671.093	241044.464	9.32	722595.339	741069.193
TP11	322705.530	241023.880	8.71	722629.769	741048.613
TP12	322794.770	241103.125	8.60	722718.991	741127.841
TP13	322761.031	241088.375	8.61	722685.259	741113.094
TP14	322802.412	241078.600	8.87	722726.631	741103.321
TP15	322800.704	241066.256	8.88	722724.923	741090.980
TP16	322765.585	241051.635	8.10	722689.811	741076.362
TP17	322721.787	241052.649	8.29	722646.023	741077.376
TP18	322783.082	241014.398	8.62	722707.304	741039.133
TP19	322782.642	241004.340	8.84	722706.864	741029.077
TP20	322830.582	241096.180	7.96	722754.795	741120.897

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator	
	Easting	Northing		Easting	Northing
TP21	322866.351	241082.890	7.27	722790.556	741107.609
TP22	322826.370	241052.937	8.63	722750.583	741077.663
TP23	322860.464	241058.750	7.59	722784.670	741083.475
TP24	322816.769	241025.389	8.84	722740.984	741050.121
TP25	322850.062	241020.213	7.82	722774.270	741044.946
TP26	322801.481	241012.361	8.71	722725.699	741037.096
TP27	322844.253	240993.983	7.17	722768.462	741018.722
TP28	322801.427	240990.854	8.80	722725.645	741015.594
California Bearing Ratio Tests					
CBR01	322722.121	241057.644	8.53	722646.357	741082.370
CBR02	322737.775	241080.197	8.26	722662.008	741104.918
CBR03	322818.482	241086.393	8.40	722742.697	741111.112
CBR04	322797.024	241035.453	8.67	722721.243	741060.183
CBR05	322781.471	240998.886	8.92	722705.693	741023.624
CBR06	322841.944	240975.112	7.50	722766.153	740999.855
CBR07	322870.960	241028.845	6.82	722795.164	741053.576
CBR08	322879.405	241079.145	7.14	722803.607	741103.865
Soakaway Tests					
SA01	322690.765	241049.262	8.91	722615.007	741073.990
SA02	322830.054	241037.767	8.87	722754.266	741062.496

Client:	Gannon Homes Ltd
Engineer:	Waterman Moylan
Contractor:	Site Investigations Ltd

Belltree Green, Clongriffin, Dublin 13

Site Investigation Report

Prepared by:

Stephen Letch

Issue Date:	$14 / 07 / 2016$
Status	Final
Revision	0

1. Introduction 1
2. Fieldwork 1
3. Laboratory Testing 3
4. Ground Conditions 3
5. Recommendations and Conclusions 4

Appendices:

1. Cable Percussive Borehole Logs
2. Trial Pit Logs and Photographs
3. Dynamic Probe Logs
4. Soakaway Test Results
5. Laboratory Test Results
6. Survey Data

1. Introduction

On the instructions of Waterman Moylan, Site Investigations Ltd (SIL) were appointed to complete a ground investigation at Belltree Green, Clongriffin, Dublin 13. The investigation was completed for the residential development of the site and was completed on behalf of the Client, Gannon Homes Ltd.

The fieldworks comprised a programme of cable percussive boreholes, trial pits, dynamic probes, soakaways and California Bearing Ratio tests. All fieldwork was carried out in accordance with Eurocode 7: Geotechnical Design and the IEI Specification \& Related Documents for Ground Investigation in Ireland (2006). Laboratory testing has been performed on representative soil samples and these were completed in accordance of BS1377: 1990.

This report presents the factual geotechnical data obtained from the field and laboratory testing with interpretation of the ground conditions discussed.

2. Fieldwork

The geotechnical fieldworks were started and completed in June 2016 and comprised the following:

- 9 No. cable percussive boreholes
- 21 No. trial pits
- 21 No. dynamic probes
- 2 No. soakaways
- 5 No. California Bearing Ratio tests

2.1. Cable Percussive Boreholes

Cable percussion boring was undertaken at 9 No. locations using a Dando 150 rig and constructed a 200 mm diameter borehole. The boreholes terminated at the scheduled depth of 6.00 mbgl at each location. It was not possible to collect undisturbed samples due to the gravel and cobble content of the strata so bulk disturbed samples were recovered at regular intervals.

In order to test the strength of the stratum, Standard Penetration Tests (SPT's) were performed at 1.00 m intervals in accordance with BS 1377 (1990). In soils with high gravel and cobble content it is appropriate to use a solid cone (60°) (CPT) instead of the split spoon and this was used throughout the testing. The test is completed over 450 mm and the cone is driven 150 mm into the stratum to ensure that the test is conducted over an undisturbed zone. The cone is then driven the remaining 300 mm and the blows recorded to report the N -Value. The report shows the N -Value with the 75 mm incremental blows listed in brackets (e.g. BH01
at 1.00 mbgl where $\mathrm{N}=16-(4,4,4,4))$. Where refusal of 50 blows across the test zone was encountered was achieved during testing, the penetration depth is also reported (e.g. BH02 at 4.00 mbgl where $\mathrm{N}=50 / 235 \mathrm{~mm}-(14,14,15,7 / 10 \mathrm{~mm})$).

The logs are presented in Appendix 1.

2.2. Trial Pits

21 No. trial pits were completed using a wheeled excavator and were logged by SIL geotechnical engineer. Representative disturbed bulk samples were recovered as the pits were excavated and they were returned to the laboratory for geotechnical testing.

The trial pit logs and photographs are presented in Appendix 2.

2.3. Dynamic Probes

Dynamic probes were carried out at 21 No. locations, adjacent to the trial pits, using a track mounted Competitor 130 machine. The testing complies with the requirements of BS1377: Part 9 (1990) and Eurocode 7: Part 3. The configuration utilised standard DPH (Heavy) probing method comprising a 50 kg weight, 500 mm drop height and a 43.7 mm diameter $\left(90^{\circ}\right)$ cone. The number of blows required to drive the cone each 100 mm increment into the sub soil is recorded in accordance with the standards. The dynamic probe provides no information regarding soil type or groundwater conditions.

The dynamic probe results can be used to analyse the strength of the soil strata encountered by the probe. 'Proceedings of the Trinity College Dublin Symposium of Field and Laboratory Testing of Soils for Foundations and Embankments' presents a paper by Foirbart that is most relevant to Irish soil conditions and within this paper the following equations were included:

$$
\begin{aligned}
& \text { DPH } \mathrm{N}_{100} \times 2.5=\text { SPT } \mathrm{N} \text { value (Granular Soils) } \\
& \mathrm{C}_{\mathrm{u}}=15 \times \text { DPH } \mathrm{N}_{100}+30 \mathrm{kPa} \text { (Cohesive Soils) }
\end{aligned}
$$

These equations present a relationship between the probe N_{100} value and the SPT N value for granular soils and the shear strength of cohesive soils.

The probe results are presented in Appendix 3 and present the data both numerically and graphically.

2.4. Soakaway Tests

2 No. soakaway tests were completed using a wheeled excavator and were logged by SIL geotechnical engineer. The soakaway test is used to identify possible areas for storm water drainage. The pit was filled with water and the level of the groundwater was recorded over
time. As stipulated by BRE Special Digest 365, the pit should be filled three times and the final cycle is used to provide the infiltration rate. The time taken for the water level to fall from 75% volume to 25% volume is required to calculate the rate of infiltration. However, if the water level does not fall then the test is deemed to have failed and the area is unsuitable as a drainage area

The soakaway logs are presented in Appendix 4.

2.5. California Bearing Ratio tests

At 5 No. locations, undisturbed cylindrical mould samples were taken to complete California Bearing Ratio tests in the laboratory. The results facilitate the designing of the access roads and associated areas. These tests were completed to BS1377: 1990: Part 4, Clause 7 'Determination of California Bearing Ratio'. The results are presented as part of Appendix 5 with the laboratory test data.

2.6. Surveying

Following the completion of all the fieldworks works, a survey of the exploratory hole locations was completed using a GeoMax GPS Rover. The data is supplied on each individual log and the locations are shown on the site plan in Appendix 6.

3. Laboratory Testing

Geotechnical laboratory testing has been carried out on representative soil samples in accordance with BS 1377 (1990). Testing included:

- 2 No. Moisture content
- 2 No. Atterberg limits
- 2 No. Particle size gradings
- 3 No. pH and sulphate
- 3 No. Chloride content
- 3 No. Organic content

Environmental testing was completed by Alcontrol Laboratories Ltd. and consisted of the following:

- 2 No. Waste Acceptance Criteria Analysis

The laboratory test results are presented in Appendix 5.

4. Ground Conditions

4.1. Overburden

A generalised summary of the ground profile at BH04 is shown overleaf. Reference should be made to the individual borehole and trial pit records in Appendices 1 and 2 for the full strata information at specific locations.

- Brown sandy slightly gravelly silty CLAY.
- Stiff brown sandy slightly gravelly silty CLAY with low cobble content.
- Very stiff dark grey sandy slightly gravelly silty CLAY with low cobble content.

The overburden deposits are of glacial origin and the particle size gradings of the cohesive soils display characteristic poorly-graded profiles for the glacial material. Fines contents (i.e. silt \& clay) from the gradings show the cohesive soils with 40% and 64% silt/clay and the Atterberg Limits tests show that silty CLAY dominates the site.

4.2. Groundwater

Groundwater details in the boreholes and trial pits during the fieldworks are noted on the logs in Appendices 1 and 2. Groundwater was not encountered in any of the boreholes or trial pits during the fieldworks.

5.0. Recommendations and Conclusions

Please note the following caveats:
The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between the exploratory hole locations or below the final level of excavation, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for adjacent unexpected conditions that have not been revealed by the exploratory holes. It is further recommended that all bearing surfaces when excavated should be inspected by a suitably qualified Engineer to verify the information given in this report.

Excavated surfaces in clay strata should be kept dry to avoid softening prior to foundation placement. Foundations should always be taken to a minimum depth of 0.50 mBGL to avoid the effects of frost action and possible seasonal shrinkage/swelling.

If it is intended that on-site materials are to be used as fill, then the necessary laboratory testing should specified by the Client to confirm the suitability. Also, relevant lab testing should be specified where stability of side slopes to excavations is a concern, or where contamination may be an issue.

5.1. Foundations

Due to the unknown depth of foundation and no longer term groundwater information, this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.

The boreholes encountered firm/stiff brown slightly sandy slightly gravelly CLAY with low cobble content. The SPT N -values at 1.00 mbgl vary from 12 (BH02) to 36 (BH09). For the analysis an N -value of 15 was chosen for the purposes of design in this stratum, in accordance with Eurocode 7 (EC 7).

Using an equation proposed by Stroud and Butler, the SPT N-value can be used to calculate the shear strength and this is $\mathrm{Cu}=5 \mathrm{~N}$. Therefore, using the value of 15 , this indicates that the shear strength of the CLAY is $75 \mathrm{kN} / \mathrm{m}^{2}$. This can be used to calculate the allowable bearing capacity (ABC) and using a factor of safety of 3 an $A B C$ of $130 \mathrm{kN} / \mathrm{m}^{2}$ would be anticipated.

If higher capacities are required then it would be suggested that the foundations are placed on the stiff black slightly sandy slightly gravelly silty CLAY. This was encountered at various depths from 1.70 mbgl (BH 06) to 2.80 mbgl (BH 09) and showed an increase in SPT N -values from 22 (BH02) to 40 (BH04). Using an SPT value of 25 at 2.00 mbgl , the shear strength of $125 \mathrm{kN} / \mathrm{m}^{2}$ would suggest that an allowable bearing capacity of $225 \mathrm{kN} / \mathrm{m}^{2}$ could be used when this strata is encountered. This shear strength would be supported by the increase in blow counts in the dynamic probes when correlated with the trial pits.

The following assumptions were made as part of these analyses. If any of these assumptions are not in accordance with detailed design or observations made during construction these recommendations should be re-evaluated.

- The foundation is to be 1 m wide.
- Foundations are to be constructed on a level formation of uniform material type (described above).
- All man-made or filled material is to be removed prior to construction.
- The bulk unit weight of the material in this stratum has a minimum density of $19 \mathrm{kN} / \mathrm{m}^{3}$.
- Based on groundwater observations this analysis assumes the groundwater will not have an effect on the construction or performance of these foundations.
- Foundation formations should be inspected by a competent geotechnical engineer prior to construction so as to verify that the observations made during the ground investigation are consistent with the actual ground conditions at the time of construction.

The trial pits indicate that excavations in the cohesive soils should be stable for a short while at least. However regular inspection of temporary excavations should be completed during construction to ensure that all slopes are stable. Temporary support should be used on any excavation that will be left open for an extended period of time.

5.2. Groundwater

The caveats overleaf relating to interpretation of groundwater levels should be noted:
There is always considerable uncertainty as to the likely rates of water ingress into excavations in clayey soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water.

Furthermore, water levels noted on the borehole and trial pit logs do not generally give an accurate indication of the actual groundwater conditions as the borehole or trial pit is rarely left open for sufficient time for the water level to reach equilibrium.

Also, during boring procedures, a permeable stratum may have been sealed off by the borehole casing, or water may have been added to aid drilling. Therefore, an extended period of groundwater monitoring using any constructed standpipes is required to provide more accurate information regarding groundwater conditions. Finally, groundwater levels vary with time of year, rainfall, nearby construction and tides.

Pumping tests would be required to determine likely seepage rates and persistence into excavations taken below the groundwater level. Deep trial pits also aid estimation of seepage rates.

As discussed previously there were no water strikes in the boreholes or trial pits. There is always considerable uncertainty as to the likely rates of water ingress into excavations in cohesive soil sites due to the possibility of localised unforeseen sand and gravel lenses acting as permeable conduits for unknown volumes of water. However, based on this information at the exploratory hole locations to date, it is considered likely that any seepages into excavations will be slow.

If groundwater is encountered during excavations then mechanical pumps will be required to remove the groundwater from sumps. Sumps should be carefully located and constructed to ensure that groundwater is efficiently removed from excavations and trenches.

5.3. Soakaway Tests

The graphs in Appendix 4 show that the areas where the soakaways were completed are unsuitable for soakaway design. The BRE Digest stipulates that the pit should half empty within 24 hrs , and extrapolation indicates this condition would not be satisfied. The test was terminated at the end of the first (of a possible three) fill/empty cycle since further testing would give even slower fall rates due to increased soil saturation.

The unsuitability of the site for soakaways is further suggested by the soil descriptions of the materials in the area of the site where the soakaway was completed, i.e. clay and silt soils.

5.4. Pavement Design

The summary of the CBR test results in Appendix 5 indicates values generally of 3.2% or more. The CBR tests samples were collected at 0.50 mbgl and inspection of the formation strata should be completed prior to construction of the pavement. Once the exact formation levels are finalised then additional in-situ testing could be completed to assist with the detailed pavement design.

5.5. Contamination

Environmental testing was carried out on two samples from the investigation and the results are shown in Appendix 5. For material to be removed from site, landfill acceptability testing (WAC) was carried out to determine whether the material on the site could be accepted as 'inert material' by an Irish landfill. The results were compared with the published waste acceptance limits of BS EN 12457-2.

The disposal suite results indicate that the material would generally be able to be treated as Inert Waste. However discussions about the acceptance of the material must be undertaken with individual landfills before removal of any material from site.

Only two samples were tested for analysis and although no major contamination was noted at the fieldwork locations, any localised contamination may have been missed. Therefore, a testing regime designed by an environmental engineer should be designed on any material that is to be removed from site to ensure that the material stays within the landfill acceptance criteria.

5.6. Aggressive Ground Conditions

The chemical tests results in Appendix 5 indicate a general pH value between 8.83 and 9.22 , which is close to neutral.

The maximum value obtained for acid soluble sulphate was $117 \mathrm{mg} / \mathrm{l}$ as SO_{3}. The BRE Special Digest 1:2005 - 'Concrete in Aggressive Ground' guidelines require SO_{4} values and after conversion $\left(\mathrm{SO}_{4}=\mathrm{SO}_{3} \times 1.2\right)$, the maximum value of $140 \mathrm{mg} / \mathrm{l}$ shows Class 1 conditions and no special precautions are required.

Appendix 1
Cable Percussive Borehole Logs

CONTRACT:	Belltree Green		HOLE ID:	BHO5
Client:	Gannon Homes	Co-ordinates:	E:722666.702	
Consultant:	Waterman Moylan			N:741176.694

CONTRACT: Belltree Green			HOLE ID:	BH08
Client:	Gannon Homes	Co-ordinates:	E:722752.141	
Consultant:	Waterman Moylan		N:741186.902	
Site Address:	Clongriffin, Dublin 13	Elevation:	8.27 m.O.D.	
Boring Started:	20/06/2016	Hole Diameter:	200 mm	
Boring Completed:	20/06/2016	Drilled by:	J. Moriarty	
Rig Type:	Dando 150	Logged by:	S. Letch	Sheet 1 of 1

Appendix 2

Trial Pit Logs and Photographs

TP01 Pit

TP01 Sidewall

TP01 Spoil

TP02 Pit

TP02 Sidewall

TP02 Spoil

TP03 Sidewall

TP03 Spoil

TP04 Pit

TP04 Sidewall

TP04 Spoil

TP05 Sidewall

TP05 Spoil

TP06 Pit

TP06 Sidewall

TP06 Spoil

TP07 Sidewall

TP07 Spoil

TP08 Pit

TP08 Sidewall

TP08 Spoil

TP09 Sidewall

TP10 Pit

TP10 Sidewall

TP10 Spoil

TP11 Sidewall

TP11 Spoil

TP12 Pit

TP12 Sidewall

TP12 Spoil

TP13 Sidewall

TP13 Spoil

TP14 Pit

TP14 Sidewall

TP14 Spoil

TP15 Sidewall

TP15 Spoil

TP16 Pit

TP16 Sidewall

TP16 Spoil

TP17 Pit

TP17 Sidewall

TP17 Spoil

TP18 Pit

TP18 Sidewall

TP18 Spoil

TP19 Pit

TP19 Sidewall

TP19 Spoil

TP20 Pit

TP20 Sidewall

TP20 Spoil

TP21 Pit

TP21 Sidewall

TP21 Spoil

Appendix 3
Dynamic Probe Logs

PENNINE DYNAMIC PROBING

Appendix 4

Soakaway Test Results

Appendix 5

Laboratory Test Results

Classification Tests													
Client	Gannon Homes												
Site	Belltree Green, Clongriffin												
S.I. File No	5295/16												
Test Lab	Site Investigations Ltd., Carhugar The Grange, 12th Lock Rd., Lucan Co. Dublin. Tel (01) 6108768 Email sildd@indigo.ie												
Report Date	14th July 2016												
Hole ID	Depth	Sample No	Lab Ref No.	Sample Type	Natural Moisture Content \%	Liquid Limit \%	Plastic Limit \%	Max. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Min. Dry Density $\mathrm{Mg} / \mathrm{m}^{3}$	Particle Density $\mathrm{Mg} / \mathrm{m}^{3}$	$\begin{gathered} \hline \% \text { passing } \\ 425 \mathrm{um} \end{gathered}$	Comments	Remarks C=Clay; M=Silt Plasticity: L=Low; $\mathbf{I}=$ Intermediate; $\mathbf{H}=\mathrm{High} ;$ $\mathbf{V}=$ Very High; $\mathbf{E}=$ Extremely High
BH03	1.50	JM05	16/573	B	9.0	38	24				52.1		CI
BH08	2.00	JM14	16/575	B	9.3	34	22				52.3		CL

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{0}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	100		
$\mathbf{2 0}$	100		
$\mathbf{1 4}$	92.5		
$\mathbf{1 0}$	88.6		
$\mathbf{6 . 3}$	83		
$\mathbf{5 . 0}$	79.8		
$\mathbf{2 . 3 6}$	70.1		
$\mathbf{2 . 0 0}$	68.5		
$\mathbf{1 . 1 8}$	61.7		
$\mathbf{0 . 6 0 0}$	56.1		
$\mathbf{0 . 4 2 5}$	52.1		
$\mathbf{0 . 3 0 0}$	48.1		
$\mathbf{0 . 2 1 2}$	4.4		
$\mathbf{0 . 1 5 0}$	37.3		
$\mathbf{0 . 0 6 3}$	28		

$$
\begin{array}{|r|c|}
\hline \text { Cobbles, \% } & 0 \\
\hline \text { Gravel, \% } & 32 \\
\hline \text { Sand, \% } & 41 \\
\hline \text { Clay / Silt, \% } & 28 \\
\hline
\end{array}
$$

Client :	Gannon Homes Ltd.
Project:	Clongriffin - Beltree Green

Material description : slightly gravelly sandy silty CLAY

Material description :	slightly gravelly sandy silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

BS 1377 Particle Size Analysis

BS Sieve size, mm	Percent passing	Hydrometer analysis	
	Diameter, mm	\% passing	
$\mathbf{1 0 0}$	100	$\mathbf{0 . 0 6 3 0}$	
$\mathbf{9 0}$	100	$\mathbf{0 . 0 2 0 0}$	
75	100	$\mathbf{0 . 0 0 6 0}$	
$\mathbf{6 3}$	100	$\mathbf{0 . 0 0 2 0}$	
$5 \mathbf{5}$	100		
$\mathbf{3 7 . 5}$	100		
$\mathbf{2 8}$	94.8		
$\mathbf{2 0}$	87.4		
$\mathbf{1 4}$	84.1		
$\mathbf{1 0}$	78.6		
$\mathbf{6 . 3}$	73.9		
$\mathbf{5 . 0}$	71.8		
$\mathbf{2 . 3 6}$	65.8		
$\mathbf{2 . 0 0}$	64.1		
$\mathbf{1 . 1 8}$	60.8		
$\mathbf{0 . 6 0 0}$	55.7		
$\mathbf{0 . 4 2 5}$	5.3		
$\mathbf{0 . 3 0 0}$	4.3		
$\mathbf{0 . 2 1 2}$	45.8		
$\mathbf{0 . 1 5 0}$	42.7		
$\mathbf{0 . 0 6 3}$	35		

[^12]| Client : | Gannon Homes Ltd. |
| ---: | :---: |
| Project: | Clongriffin - Beltree Green |

Material description : slightly sandy gravelly silty CLAY

Material description :	slightly sandy gravelly silty CLAY
Remarks :	Soils with clay or silt content between $15 \%-35 \%$ can be classified as clay or silt depending on the field Engineers assessment of in-situ behaviour. Where material is for re-use and therefore disturbed, only soils with clay or silt $>35 \%$ are classified as clay or silt

Hole Id	Depth (mBGL)	Sample No	Lab Ref	pH Value	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ g / L	Sulphate Content Acid Soluble $\left(\mathrm{SO}_{3}\right)$ $\%$	Organic Content $\%$	Chloride ion Content (soil:water ratio 2:1) $\%$	\% passing 2 mm	Remarks

Carhugar
12th Lock Road
Lucan
Co. Dublin
Attention: Stephen Letch

CERTIFICATE OF ANALYSIS

Date:

Customer:

Sample Delivery Group (SDG):
Your Reference:

Location:	Beltree Green
Report No:	368314

We received 2 samples on Wednesday June 29, 2016 and 2 of these samples were scheduled for analysis which was completed on Saturday July 09, 2016. Accredited laboratory tests are defined within the report, but opinions, interpretations and on-site data expressed herein are outside the scope of ISO 17025 accreditation.

Should this report require incorporation into client reports, it must be used in its entirety and not simply with the data sections alone.

All chemical testing (unless subcontracted) is performed at ALcontrol Hawarden Laboratories.

Approved By:

Sonia McWhan

Operations Manager

Only received samples which have had analysis scheduled will be shown on the following pages.

SDG:	$160630-16$	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	S68314

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Sample Descriptions

Grain Sizes

very fine	$<0.063 \mathrm{~mm}$	fine	$0.063 \mathrm{~mm}-0.1 \mathrm{~mm}$	medium	$0.1 \mathrm{~mm}-2 \mathrm{~mm}$	coarse	2mm - 10 mm	very coarse	>10mm

Lab Sample No(s)	Customer Sample Ref.	Depth (m)	Colour	Description	Grain size	Inclusions	Inclusions 2
13681226	TP06	0.50	Dark Brown	Silt Loam	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \end{gathered}$	Vegetation	Stones
13681227	TP14	0.50	Dark Brown	Silt Loam	$\begin{gathered} 0.002-0.063 \\ \mathrm{~mm} \end{gathered}$	Stones	N/A

These descriptions are only intended to act as a cross check if sample identities are questioned, and to provide a log of sample matrices with respect to MCERTS validation. They are not intended as full geological descriptions

We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally ocurring soil profiles, or from fill/made ground, as long as these materials constitute the major part of the sample

Other coarse granular materials such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.

CERTIFICATE OF ANALYSIS

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

CERTIFICATE OF ANALYSIS

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	R/A/16
Client Reference:		Attention:	Stephen Letch	Report Number:
Superseded Report:				

GRO by GC-FID (S)

1-5\&*\&@ Sample deviation (see appendix)	LOD Reference		
Componits	Method		
Methyl tertiary butyl ether (MTBE)	$<5 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
Benzene	$<10 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
Toluene	$<2 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
Ethylbenzene	$<6 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
m,p-Xylene	$<3 \mu \mathrm{~g} / \mathrm{kg}$	TM089	TM089
o-Xylene	$<9 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
sum of detected mpo xylene by GC	$<24 \mu \mathrm{~g} / \mathrm{kg}$	TM089	
sum of detected BTEX by GC			

TP0

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference

Mass Sample taken (kg)	0.098
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

Site Location

Natural Moisture Content (\%)	9.53
Dry Matter Content (\%)	91.3

Case

Case	
SDG	160630-16
Lab Sample Number(s)	13681226
Sampled Date	27-Jun-2016
Customer Sample Ref.	TP06
Depth (m)	0.50
Solid Waste Analysis	Result
Total Organic Carbon (\%)	0.809
Loss on Ignition (\%)	2.56
Sum of BTEX ($\mathrm{mg} / \mathrm{kg}$)	<0.024
Sum of 7 PCBs (mg/kg)	<0.021
Mineral Oil (mg/kg)	72.4
PAH Sum of 17 (mg/kg)	<10
pH (pH Units)	8.61
ANC to pH 6 (mol/kg)	0.571
ANC to pH 4 (mol/kg)	3.92

Landfill Waste Acceptance Criteria Limits

Eluate Analysis	Conc $^{\mathrm{n}}$ in 10:1 eluate (mg/l)		10:1 conc ${ }^{\text {n leached (}}$ ($\mathrm{mg} / \mathrm{kg}$)		Limit values for compliance leaching test using BS EN 12457-3 at L/S $10 \mathrm{I} / \mathrm{kg}$		
	Result	Limit of Detection	Result	Limit of Detection			
Arsenic	0.000374	<0.00012	0.00374	<0.0012	0.5	2	25
Barium	0.00862	<0.00003	0.0862	<0.0003	20	100	300
Cadmium	<0.0001	<0.0001	<0.001	<0.001	0.04	1	5
Chromium	0.00105	<0.00022	0.0105	<0.0022	0.5	10	70
Copper	<0.00085	<0.00085	<0.0085	<0.0085	2	50	100
Mercury Dissolved (CVAF)	<0.00001	<0.00001	<0.0001	<0.0001	0.01	0.2	2
Molybdenum	0.00594	<0.00024	0.0594	<0.0024	0.5	10	30
Nickel	0.000489	<0.00015	0.00489	<0.0015	0.4	10	40
Lead	0.000063	<0.00002	0.00063	<0.0002	0.5	10	50
Antimony	0.000611	<0.00016	0.00611	<0.0016	0.06	0.7	5
Selenium	0.000481	<0.00039	0.00481	<0.0039	0.1	0.5	7
Zinc	0.000682	<0.00041	0.00682	<0.0041	4	50	200
Chloride	<2	<2	<20	<20	800	15000	25000
Fluoride	<0.5	<0.5	<5	<5	10	150	500
Sulphate (soluble)	19.9	<2	199	<20	1000	20000	50000
Total Dissolved Solids	71.4	<5	714	<50	4000	60000	100000
Total Monohydric Phenols (W)	<0.016	<0.016	<0.16	<0.16	1	-	-
Dissolved Organic Carbon	<3	<3	<30	<30	500	800	1000

Leach Test Information

Date Prepared	06-Jul-2016
pH (pH Units)	8.90
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	90.90
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.50
Volume Leachant (Litres)	0.891

[^13]| SDG: | 160630-16 | Location: | Beltree Green | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-81 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

CEN 10:1 SINGLE STAGE LEACHATE TEST

WAC ANALYTICAL RESULTS

REF : BS EN 12457/2

Client Reference

Mass Sample taken (kg)	0.096
Mass of dry sample (kg)	0.175
Particle Size $<4 \mathrm{~mm}$	$>95 \%$

>95\%

Site Location	Beltree Green
Natural Moisture Content (\%)	7.08
Dry Matter Content (\%)	93.4

Case		Landfill Waste Acceptance Criteria Limits		
SDG	160630-16			
Lab Sample Number(s)	13681227	Inert Waste Landfill	StableNon-reactiveHazardous Wastein Non-HazaraousLandfill	Hazardous Waste Landfill
Sampled Date	27-Jun-2016			
Customer Sample Ref.	TP14			
Depth (m)	0.50			
Solid Waste Analysis	Result			
Total Organic Carbon (\%)	0.37	3	5	6
Loss on Ignition (\%)	1.3	-	-	10
Sum of BTEX (mg/kg)	0.0604	6	-	-
Sum of 7 PCBs (mg/kg)	<0.021	1	-	-
Mineral Oil (mg/kg)	18.9	500	-	-
PAH Sum of 17 ($\mathrm{mg} / \mathrm{kg}$)	<10	100	-	-
pH (pH Units)	8.94	-	>6	-
ANC to pH 6 (molkg)	0.708	-	-	-
ANC to pH 4 (mol/kg)	5.32	-	-	-

Leach Test Information

Date Prepared	06-Jul-2016
pH (pH Units)	8.98
Conductivity $(\mu \mathrm{S} / \mathrm{cm})$	57.60
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	20.40
Volume Leachant (Litres)	0.894

[^14]| SDG: | 160630-16 | Location: | Beltree Green | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-81 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Table of Results - Appendix

Method No	Reference	Description	Wet/Dry Sample	Surrogate Corrected
PM024	Modified BS 1377	Soil preparation including homogenisation, moisture screens of soils for Asbestos Containing Material		
PM115		Leaching Procedure for CEN One Stage Leach Test 2:1 \& 10:1 1 Step		
TM018	BS 1377: Part 31990	Determination of Loss on Ignition		
TM061	Method for the Determination of EPH,Massachusetts Dept.of EP, 1998	Determination of Extractable Petroleum Hydrocarbons by GC-FID (C10-C40)		
TM089	Modified: US EPA Methods 8020 \& 602	Determination of Gasoline Range Hydrocarbons (GRO) and BTEX (MTBE) compounds by Headspace GC-FID (C4-C12)		
TM090	Method 5310, AWWA/APHA, 20th Ed., 1999 / Modified: US EPA Method 415.1 \& 9060	Determination of Total Organic Carbon/Total Inorganic Carbon in Water and Waste Water		
TM104	Method 4500F, AWWA/APHA, 20th Ed., 1999	Determination of Fluoride using the Kone Analyser		
TM123	BS 2690: Part 121:1981	The Determination of Total Dissolved Solids in Water		
TM132	In - house Method	ELTRA CS800 Operators Guide		
TM133	BS 1377: Part 3 1990;BS 6068-2.5	Determination of pH in Soil and Water using the GLpH pH Meter		
TM152	Method 3125B, AWWA/APHA, 20th Ed., 1999	Analysis of Aqueous Samples by ICP-MS		
TM168	EPA Method 8082, Polychlorinated Biphenyls by Gas Chromatography	Determination of WHO12 and EC7 Polychlorinated Biphenyl Congeners by GC-MS in Soils		
TM182	CEN/TC 292 - WI 292046-chacterization of waste-leaching Behaviour Tests- Acid and Base Neutralization Capacity Test	Determination of Acid Neutralisation Capacity (ANC) Using Autotitration in Soils		
TM183	BS EN 23506:2002, (BS 6068-2.74:2002) ISBN 0580389243	Determination of Trace Level Mercury in Waters and Leachates by PSA Cold Vapour Atomic Fluorescence Spectrometry		
TM184	EPA Methods 325.1 \& 325.2,	The Determination of Anions in Aqueous Matrices using the Kone Spectrophotometric Analysers		
TM213	In-house Method	Rapid Determination of PAHs by GC-FID		
TM259	by HPLC	Determination of Phenols in Waters and Leachates by HPLC		

[^15]| SDG: | 160630-16 | Location: | Beltree Green | Order Number: |
| :--- | :--- | :--- | :--- | :--- |
| Job: | D_SITEINV_NCS-81 | Customer: | Site Investigations Ltd | Report Number: |
| Client Reference: | | Attention: | Stephen Letch | Superseded Report: |

Test Completion Dates

Lab Sample No(s)		
	13681226	13681227
Customer Sample Ref.	TP06	TP14
AGS Ref. Depth Type		
	0.50	0.50
	SOLID	SOLID
ANC at pH4 and ANC at pH 6	08-Jul-2016	08-Jul-2016
Anions by Kone (w)	08-Jul-2016	08-Jul-2016
CEN 10:1 Leachate (1 Stage)	06-Jul-2016	06-Jul-2016
CEN Readings	07-Jul-2016	07-Jul-2016
Dissolved Metals by ICP-MS	08-Jul-2016	08-Jul-2016
Dissolved Organic/lnorganic Carbon	08-Jul-2016	08-Jul-2016
Fluoride	08-Jul-2016	08-Jul-2016
GRO by GC-FID (S)	08-Jul-2016	08-Jul-2016
Loss on Ignition in soils	08-Jul-2016	08-Jul-2016
Mercury Dissolved	08-Jul-2016	08-Jul-2016
Mineral Oil	09-Jul-2016	09-Jul-2016
PAH Value of soil	07-Jul-2016	07-Jul-2016
PCBs by GCMS	08-Jul-2016	08-Jul-2016
pH	07-Jul-2016	07-Jul-2016
Phenols by HPLC (W)	08-Jul-2016	08-Jul-2016
Sample description	06-Jul-2016	06-Jul-2016
Total Dissolved Solids	08-Jul-2016	08-Jul-2016
Total Organic Carbon	08-Jul-2016	08-Jul-2016

CERTIFICATE OF ANALYSIS

SDG:	160630-16	Location:	Beltree Green	Order Number:
Job:	D_SITEINV_NCS-81	Customer:	Site Investigations Ltd	Report Number:
Client Reference:		Attention:	Stephen Letch	Superseded Report:

Appendix

1. Results are expressed on a dry weight basis (dried at $35^{\circ} \mathrm{C}$) for all soil analyses except for the following: NRA and CEN Leach tests, flash point LOI, pH, ammonium as NH4 by the BRE method, VOC TICs and SVOC TICs.

2. Samples will be run in duplicate upon request, but an additional charge may be incurred.

3. If sufficient sample is received a sub sample will be retained free of charge for 30 days after analysis is completed (e-mailed) for all sample types unless the sample is destroyed on testing. The prepared soil sub sample that is analysed for asbestos will be retained for a period of 6 months after the analysis date. All bulk samples will be retained for a period of 6 months after the analysis date. All samples received and not scheduled will be disposed of one month after the date of receipt unless we are instructed to the contrary. Once the initial period has expired, a storage charge will be applied for each month or part thereof until the client cancels the request for sample storage. ALcontrol Laboratories reserve the right to charge for samples received and stored but not analysed.
4. With respect to turnaround, we will always endeavour to meet client requirements wherever possible, but turnaround times cannot be absolutely guaranteed due to so many variables beyond our control.
5. We take responsibility for any test performed by sub-contractors (marked with an asterisk). We endeavour to use UKAS/MCERTS Accredited Laboratories, who either complete a quality questionnaire or are audited by ourselves. For some determinands there are no UKAS/MCERTS Accredited Laboratories, in this instance a laboratory with a known track record will be utilised.
6. When requested, the individual sub sample scheduled will be analysed in house for the presence of asbestos fibres and asbestos containing material by our documented in house method TM048 based on HSG 248 (2005), which is accredited to ISO17025. If a specific asbestos fibre type is not found this will be reported as "Not detected". If no asbestos fibre types are found all will be reported as "Not detected" and the sub sample analysed deemed to be clear of asbestos. If an asbestos fibre type is found it will be reported as detected (for each fibre type found). Testing can be carried out on asbestos positive samples, but, due to Health and Safety considerations, may be replaced by alternative tests or reported as No Determination Possible (NDP). The quantity of asbestos present is not determined unless specifically requested.
7. If no separate volatile sample is supplied by the client, or if a headspace or sediment is present in the volatile sample, the integrity of the data may be compromised. This will be flagged up as an invalid VOC on the test schedule and the result marked as deviating on the test certificate.
8. If appropriate preserved bottles are not received preservation will take place on receipt However, the integrity of the data may be compromised.
9. NDP - No determination possible due to insufficient/unsuitable sample.
10. Metals in water are performed on a filtered sample, and therefore represent dissolved metals - total metals must be requested separately.
11. Results relate only to the items tested.
12. LoDs (Limit of Detection) for wet tests reported on a dry weight basis are not corrected for moisture content.
13. Surrogate recoveries - Surrogates are added to your sample to monitor recovery of the test requested. A \% recovery is reported, results are not corrected for the recovery measured. Typical recoveries for organics tests are $70-130 \%$, they are generally wider for volatiles analysis, $50-150 \%$. Recoveries in soils are affected by organic rich or clay rich matrices. Waters can be affected by remediation fluids or high amounts of sediment. Test results are only ever reported if all of the associated quality checks pass; it is assumed that all recoveries outside of the values above are due to matrix affect .
14. Product analyses - Organic analyses on products can only be semi-quantitative due to the matrix effects and high dilution factors employed.
15. Phenols monohydric by HPLC include phenol, cresols (2-Methylphenol, 3-Methylphenol and 4-Methylphenol) and Xylenols (2,3 Dimethylphenol, 2,4 Dimethylphenol, 2,5 Dimethylphenol, 2,6 Dimethylphenol, 3,4 Dimethyphenol, 3,5 Dimethylphenol).
16. Total of 5 speciated phenols by HPLC includes Phenol, 2,3,5-Trimethyl Phenol, 2-Isopropylphenol, Cresols and Xylenols (as detailed in 15).
17. Stones/debris are not routinely removed. We always endeavour to take a representative sub sample from the received sample.
18. In certain circumstances the method detection limit may be elevated due to the sample being outside the calibration range. Other factors that may contribute to this include possible interferences. In both cases the sample would be diluted which would cause the method detection limit to be raised.
19. Mercury results quoted on soils will not include volatile mercury as the analysis is performed on a dried and crushed sample.
20. For the BSEN $12457-3$ two batch process to allow the cumulative release to be calculated, the volume of the leachate produced is measured and filtered for all tests. We therefore cannot carry out any unfiltered analysis. The tests affected include volatiles GCFID/GCMS and all subcontracted analysis.
21. For leachate preparations other than Zero Headspace Extraction (ZHE) volatile loss may occur.
22. We are accredited to MCERTS for sand, clay and loam/topsoil, or any of these materials - whether these are derived from naturally occurring soil profiles, or from fill /made ground, as long as these materials constitute the major part of the sample. Other coarse granular material such as concrete, gravel and brick are not accredited if they comprise the major part of the sample.
23. Analysis and identification of specific compounds using GCFID is by retention time only, and we routinely calibrate and quantify for benzene, toluene, ethylbenzenes and xylenes (BTEX). For total volatiles in the C5-C12 range, the total area of the chromatogram is integrated and expressed as ug/kg or ug/l. Although this analysis is commonly used for the quantification of gasoline range organics (GRO), the system will also detect other compounds such as chlorinated solvents, and this may lead to a falsely high result with respect to hydrocarbons only. It is not possible to specifically identify these non-hydrocarbons, as standards are not routinely run for any other compounds, and for more definitive identification, volatiles by GCMS should be utilised.
24. Tentatively Identified Compounds (TICs) are non-target peaks in VOC and SVOC analysis. All non-target peaks detected with a concentration above the LoD are subjected to a mass spectral library search. Non-target peaks with a library search confidence of $>75 \%$ are reported based on the best mass spectral library match. When a non-target peak with a library search confidence of $<75 \%$ is detected it is reported as "mixed hydrocarbons". Non-target compounds identified from the scan data are semi-quantified relative to one of the deuterated internal standards, under the same chromatographic conditions as the target compounds. This result is reported as a semi-quantitative value and reported as Tentatively Identified Compounds (TICs). TICs are outside the scope of UKAS accreditation and are not moisture corrected.

Sample Deviations

1 Container with Headspace provided for volatiles analysis
2 Incorrect container received
Deviation from method
Holding time exceeded before sample received

4	Holding time exceeded before sample received
5	Samples exceeded holding time before presevation was performed

Sampled on date not provided

Sample holding time exceeded in laboratory
Sample holding time exceeded due to sampled on date
Sample Holding Time exceeded - Late arrival of instructions.

Asbestos

Identification of Asbestos in Bulk Materials \& Soils
The results for identification of asbestos in bulk materials are obtained from supplied bulk materials which have been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

The results for identification of asbestos in soils are obtained from a homogenised sub sample which has been examined to determine the presence of asbestos fibres using ALcontrol Laboratories (Hawarden) in-house method of transmitted/polarised light microscopy and central stop dispersion staining, based on HSG 248 (2005).

Asbestos Type	Common Name
Crysofie	WiteAstestos
Amosie	BownAsbestos
Coidatie	Bue Astesos
Fbrous Adindie	-
Fbrous Arthophylie	-
Fbras Trendie	-

Visual Estimation Of Fibre Content

Estimation of fibre content is not permitted as part of our UKAS accredited test other than: - Trace - Where only one or two asbestos fibres were identified.

Further guidance on typical asbestos fibre content of manufactured products can be found in HSG 264.

The identification of asbestos containing materials and soils falls within our schedule of tests for which we hold UKAS accreditation, however opinions, interpretations and all other information contained in the report are outside the scope of UKAS accreditation.

Appendix 6
Survey Data

Site Survey

Location	Irish National Grid		Level	Irish Transverse Mercator	
	Easting	Northing		Easting	Northing
Boreholes					
BH01	322731.117	241241.071	8.53	722655.353	741265.757
BH02	322772.971	241228.509	8.06	722697.198	741253.198
BH03	322751.786	241206.663	8.31	722676.017	741231.356
BH04	322717.588	241180.542	8.90	722641.826	741205.241
BH05	322742.470	241151.989	8.80	722666.702	741176.694
BH06	322841.084	241208.431	7.81	722765.296	741233.123
BH07	322890.310	241178.609	7.20	722814.511	741203.308
BH08	322827.927	241162.199	8.27	722752.141	741186.902
BH09	322852.104	241109.441	7.51	722776.312	741134.155
Trial Pits					
TP01	322717.396	241227.448	8.40	722641.634	741252.137
TP02	322718.256	241207.315	8.42	722642.494	741232.008
TP03	322751.575	241221.284	8.02	722675.806	741245.974
TP04	322765.390	241188.070	8.36	722689.618	741212.767
TP05	322706.227	241180.512	9.03	722630.467	741205.211
TP06	322740.100	241181.853	8.57	722664.333	741206.552
TP07	322775.804	241170.018	8.57	722700.029	741194.719
TP08	322702.383	241155.703	9.07	722626.624	741180.408
TP09	322729.097	241166.843	8.59	722653.332	741191.545
TP10	322764.018	241135.400	8.66	722688.246	741160.109
TP11	322860.199	241203.765	7.95	722784.407	741228.458
TP12	322895.576	241192.948	7.27	722819.776	741217.643
TP13	322836.045	241192.982	7.84	722760.258	741217.678
TP14	322849.888	241167.412	7.90	722774.098	741192.113
TP15	322880.901	241166.912	7.48	722805.104	741191.613
TP16	322901.552	241147.584	7.30	722825.750	741172.289
TP17	322851.059	241147.657	7.77	722775.268	741172.363
TP18	322821.327	241136.080	8.42	722745.542	741160.788
TP19	322848.279	241130.044	7.88	722772.489	741154.753
TP20	322878.052	241124.600	7.39	722802.255	741149.310
TP21	322817.405	241117.670	8.37	722741.621	741142.382
California Bearing Ratio Locations					
CBR01	322705.336	241204.325	8.73	722629.577	741229.019
CBR02	322753.343	241185.758	8.45	722677.573	741210.456
CBR03	322827.242	241165.672	8.26	722751.456	741190.374
CBR04	322872.259	241160.525	7.54	722796.464	741185.228
CBR05	322884.296	241112.301	6.91	722808.498	741137.014
Soakaway Tests					
SA01	322712.284	241167.078	9.01	722636.523	741191.780
SA02	322845.527	241122.670	7.67	722769.737	741147.381

Grange Road, Donaghmede Ground Investigation Report
(No. 9211)
January 2004

Site Investigation Works
 For the Proposed Development at Grange Road, Donaghmede, Dublin 13

Ground Investigation Report

Client: Gannon Homes Ltd
Engineer: John Moylan \& Associates Consulting Engineers

January 2004

IGSL Ltd

TABLE OF CONTENTS

Foreword

1. Introduction
2. Fieldwork
2.1 Boreholes2.2 Trial pits
3. Laboratory Tests
4. Ground Conditions
5. Discussion
5.1 Main Square
5.2 Block 20
5.3 Site B
5.4 Block 21
5.5 Block 18
5.6 Block 22
5.7 Block 2
5.8 Block 1
Appendices
Appendix 1 - Cable Percussion Borehole logs
Appendix 2 -Trial Pit logs
Appendix 3 -Laboratory test data
Appendix 4 -Location Drawing

FOREWORD

The following Conditions and Notes on Site Investigation Procedures should be read in conjunction with this report.

General.

Recommendations made, and opinions expressed in the report are based on the strata observed in the exploratory holes, together with the results of in-situ and laboratory tests. No responsibility can be held for conditions which have not been revealed by exploratory work, or which occur between exploratory hole locations. Whilst the report may suggest the likely configuration of strata, both between exploratory hole locations, or below the maximum depth of the investigation, this is only indicative, and liability cannot be accepted for its accuracy.

Unless specifically stated, no account has been taken of possible subsidence due to mineral extraction below or close to the site.

Boring Procedures.

Unless otherwise stated, the 'Shell and Auger' technique of soft ground boring has been employed. All boring operations sampling and/or logging of soils and in-situ testing complies with the recommendations of the British Standard Code of Practice BS 5930 (1999), 'Site Investigation' and BS 1377:1990, 'Methods of test for soils for civil engineering purposes'.

Whilst the technique allows the maximum data to be obtained in soft ground, some disturbance and variation of soft and layered soils is unavoidable. Attention is drawn to this condition, whenever it is suspected. Where cobbles and boulders are recorded, no conclusion should be drawn concerning the size, presence, lithological nature, or numbers per unit volume of ground.

Where peat has been encountered during siteworks, samples have been logged in accordance with BS 5930:1999 Part 6 Identification and description of soils,

Routine Sampling.

Undisturbed samples of soils, predominantly cohesive in nature are obtained unless otherwise stated by a 104 mm diameter open-drive tube sampler. In granular soils, and where undisturbed sampling is inappropriate, disturbed samples are collected. Smaller disturbed samples are also recovered at intervals to allow a visual examination of the full strata section.

In-Situ Testing.

Standard penetration tests, utilising either the standard split spoon sampler or solid cone and automatic trip-hammer are conducted unless otherwise where required by instruction. Subsequent to a seating drive of 150 mm , a summation for the number of blows for 300 mm penetration is recorded on the boring records together with the blow count for each 75 mm penetration. In cases where incomplete penetration is obtained, the number of blows for the recorded value of penetration are noted. In coarse granular soils, a cone end is fitted to the sampler and a similar procedure adopted.

Growndwater.

The depth of entry of any influx of groundwater is recorded during the course of boring operations. However, the normal rate of boring does not usually permit the recording of an equilibrium level for any one water strike. Where possible drilling is suspended for a period of twenty minutes to monitor the subsequent rise in water level.

Groundwater conditions observed in the borings or pits are those appertaining to the period of investigation. It should be noted however, that groundwater levels are subject to diurnal, seasonal and climatic variations and can also be affected by drainage condition, tidal variation or other causes.

Retention of Samples.

After satisfactory completion of all the scheduled laboratory tests on any sample, the remaining material is discarded.

Unless a period of retention of samples is agreed, it is our normal practice to discard all soil samples one month after submission of our final report.

1. INTRODUCTION

At the request of Ganon Homes Ltd and John Moylan and Associates Consulting Engineers, IGSL Ltd have undertaken the geotechnical investigation work for the Proposed Development at Grange Road, Donaghmede, Dublin 13. The proposed development will include the construction of many residential units, multistory apartments with basements, hospitals, a railway station, a railway underpass and associated roads and services.

The ground investigation work was carried out under the direction of John Moylan and Associates Consulting Engineers to determine the ground conditions in each of the following areas: the main square; block 20 ; block 21 ; block 22 ; block 2 ; block 1 ; block 18 and site B. The investigation fieldwork comprised of eighteen cable percussion boreholes and eight trial pits.

The primary objectives of the investigation were as follows:

- Determine the sequence, consistency and strength of superficial soils in the proposed development area.
- To evaluate groundwater conditions in various areas.
- Provide samples for laboratory testing.

It is noted that the soil samples were logged in accordance with BS 5930, Code of Practice for Site Investigations (1999). This report presents the geotechnical data obtained from the exploratory holes and laboratory test data. A discussion of ground conditions is also included.

2. FTELDWORK

This is a green field site that stretches over approximately one hundred acres or more and generally comprises of gentle sloping arable land dotted with patches of marshy ground, which are concentrated in the south west of the site. The site is bounded by roads on the north and west, by the dart line on the east and green areas on the southern end.

Trial pits and boreholes were located in the proposed areas of the individual units. They consist of multistory buildings with shallow and basement foundations.

The fieldwork programme for the works was undertaken during the period September 2004 and comprised the following:

- Eighteen 200 mm diameter cable percussion boreholes
- Eight trial pits
- Associated sampling and in-situ testing

2.1 Boreholes

The cable percussion boreholes were sunk using a Dando 150 rig and employed conventional cable tool boring methods.

Bulk disturbed soil samples were taken at approximately 1m intervals or change of strata. Likewise, Standard Penetration Tests (SPT's) were carried out at 1 m intervals. Undisturbed samples (U100) were attempted in the 'cohesive' soils but due to the granular nature of the soil they were unsuccessful. Given the mainly coarse composition of the sub-soils a solid cone (60°) was used in each of the SPT tests.

Groundwater monitoring standpipes were installed in BH8, 13, 23 and 25A. The standpipes were installed with pea gravel response zone, cement - bentonite pellet grout seal and steel headwork covers were concreted in place.

Details of the strata encountered, SPT N-Values, groundwater strikes, chiselling (hatd strata boring) and standpipe installations are presented on the boring records in Appeadix 1.

2.2 Trial Pits

The trial pits were excavated using a JCB and were logged and sampled by an IGSL engineering geologist.

Representative bulk disturbed samples of the superficial soils were taken, These were labelled, sealed and returned to the laboratory in Newbridge, Co. Kildare for testing. Details of groundwater strikes and stability of the trial pit sidewalls were noted as the excavation progressed. The trial pit was backfilled with the arisings and reinstated to the satisfaction of the Engineer. The trial pit logs are presented in Appendix 2.

3.0 LABORATORY TESTING

On completion of site operations a schedule of laboratory tests were produced by IGSL. Tests were carried out in IGSLs laboratory in Newbridge, Co. Kildare.

4.0 GROUND CONDITIONS

The ground conditions in the proposed development areas comprised generally of a combination of the following units:

> - Sandy, gravelly CLAY/SILT with occasional cobbles and boulders
> - \quad SILT
> - \quad Sandy, gravelly CLAY with occasional cobbles and boulders
> - \quad Candy, medium coarse GRAVEL, with occasional cobbles medium coarse SAND with occasional cobbles
> - \quad lay

Trial pits generally terminated between 2.5 and 3.0 m bgl while most boreholes refused at 7 or 8 m bgl. The superficial deposits mostly consisted of sandy, gravelly CLAY with varying strengths. TP 10A; 11A; 12A, 16 and BH 16 uncovered SANDS and GRAVELS at varying depths.

Groundwater strikes were recorded in TP 10A; 11A and 12A and subsequently led to sidewall instability. Groundwater monitoring standpipes were generally installed in each of the individual proposed development areas. Groundwater levels in the standpipes were measured throughout the ground investigation fieldwork period. This data is shown in Table 1 and shows levels in the overburden to be standing at approximately $0.5 / 0.7 \mathrm{~m} \mathrm{blg}$ while BH 13 has a groundwater level at 0.10 m bgl .

5.0. DISCUSSION

On examination of the trial pit trenches and boreholes the following is recommended.

5.1 Main Square

The superficial deposits in this area within the first 2.50 m are predominantly classed as firm, brown, sandy, gravelly CLAY. With increasing depth the material changes to a very stiff to hard CLAY with N values reaching refusal.

Foundations for a two to three storey building with a basement structure should be taken down to the competent very stiff to hard, black, sandy, gravelly clay sub - stratum at approximately 2.70 m bgl. This material will give an allowable bearing pressure of 250 $\mathrm{kN} / \mathrm{m}^{2}$. When excavating the basement structure appropriate shoring and benching of the slopes should be applied to ensure stability and immediate concrete blinding should be implemented tp prevent against degradation of the soils.

Visual inspection of all excavations should take place and standard safety precautions relating to personnel working in trenches should be adopted

The stiff gravelly clay seen in the borehole records is known to be glacial in origin and therefore over consolidated. Hence settlement within this material will be minimal and not expected to cause problems. If a basement is proposed for this building the high water level should be noted and uplift should be evaluated.

Groundwater was observed in each of the boreholes. A groundwater monitoring standpipe was installed in BH 25 A and revealed a standing water level at 0.70 m blg.

5.2 Block 20

The substratum for BH21, 22A and 23 generally reveal a very soft to soft clay, which increases in strength to a very stiff to hard sandy, gravelly clay from approximately 2.5 -3.0 m blg.

In terms of strength and load carrying capabilities the over consolidated glacial till of sandy, gravelly CLAY/SLLT would give an allowable beariag capacity of $250 \mathrm{kN} / \mathrm{m}^{2}$. The foundation depths vary throughout this site. The suitable competent sub - stratum in BH 23 is encountered at 2.60 m bgl while in BH 21 and 22 A it is at 3.50 and 3.70 m bgl . A basement structure is proposed for this site, so again appropriate shoring and benching of the slopes should be applied to ensure stability and immediate concrete blinding should be implemented.

Settlement will be minimal due to the over consolidated nature of the sandy, gravelly CLAY which is glacial in origin

Groundwater strikes were encountered in each of the three boreholes. A standing water level of approximately 0.50 m blg was established and should be considered against uplift in the basement structure.

5.3 Site B

Trial pits TP 14 to 16 reveal deposits of firm/stiff sandy, gravelly CLAY over stiff/dense CLAY/SULT and SAND. TP17 shows 900 mm of MADE GROUND overlying this material. Shear vanes taken at 0.50 m established an average kPA of 61 . This classes the stratum at that level as firm except for TP 16, which appears to be stiff.

From visual inspection and trial pit records, foundations are recommended to be placed on the very stiff - hard / dense CLAY and SAND. This will give the required bearing pressure of $200 \mathrm{kN} / \mathrm{m} 2$ for the proposed $3 / 4$ storey building. Taking all the trial pits into consideration the average excavation depth would be approximately 2.0 m blg . Supervision of all excavations should take place to make sure foundations are placed at the correct level and standard safety precautions relating to personnel working in trenches should be adopted.

If higher foundation depths are required further investigation by means of dynamic probing would be recommended.

There were no groundwater strikes encountered in the trial pits therefore all excavations should be stable and dry. Settlement will be minimal due to the over consolidated nature of the founding material.

5.4 Block 21

Foundations for Block 21 should be taken down to the competent stiff to very stiff glacial till sub stratum between 2.70 and 2.80 m bgl. The high STP's that were taken in the boreholes suggest an allowable bearing pressure of $250 \mathrm{kN} / \mathrm{m}^{2}$.

Where low $\mathrm{SPT}-\mathrm{N}$ values appear in BH 16 the above mentioned foundations have deepened to perhaps a depth of 6.0 m bgl to achieve the above mentioned allowable bearing pressure.

A groundwater monitoring standpipe was installed in BH 18 and revealed a standing water level at 0.50 m bgl. This should be taken into consideration with the possibility of uplift in the basement structure.

Excavations for the basement structure should be monitored to make sure of trench stability. Concrete blinding should be implemented immediately to prevent against degradation of the site.

5.5 Block 18

Trial pits 10A, 12A, and 13A reveal superficial deposits of firm/stiff sandy, gravelly CLAY over stiff to hard, black sandy gravelly CLAY. A very loose GRAVEL appears at in TP 11A causing severe collapse of the trial pit sidewalls and as a result the pit had to be terminated.

The proposed four storey building would be founded again on the glacial stiff to very stiff gravelly CLAY at an average depth of approximately 2.0 m bgl . This again would give a required allowable bearing pressure of $200 \mathrm{kN} / \mathrm{m}^{2}$.

Excavations could prove to be difficult due to the sidewall collapse experienced in most of the trial pits. Groundwater seepage was observed between $1.40-1.70 \mathrm{~m}$ bgl which added to trench instability. This is highlighted in TP11A as the pit was terminated due to sidewall collapse. Further investigation by means of dynamic probing is recommended to establish a bearing pressure in this material and to confirm the very stiff horizon.

5.6 Block 22

The superficial deposits for this proposed structure are classed as soft/firm SET/CLAY overlying the stiff/very stiff black/brown CLAY which again appears to be the suitable founding stratum.

This sub stratum is capable of carrying the load of a fourffive storey building with a basement structure. Foundation depths should be placed at approximately 4.80 m bgl. Giving an allowable bearing pressure of $250 \mathrm{kN} / \mathrm{m}^{2}$ this glacial deposit is a sound founding medium. It is readily controlled and due to its' over consolidated nature settlement would be mainimal.

Groundwater was encountered in both boreholes. This should be considered with regard to the proposed basement structure. Excavation slopes should perhaps be 1.5:1 so as to ensure stability. Visual inspection should of all excavations should be carried out and standard safety precautions implemented.

5.7 Block 2

The top 3.50 m of the overburden is comprised of soft/firm, sandy, gravelly CLAY overlying the very stiff to hard, over consolidated CLAY.

Foundations for the proposed block 2 require an allowable bearing pressure of 250 $\mathrm{kN} / \mathrm{m}^{2}$. The over consolidated glacial till at approximately 3.50 m bgl would meet this requirement.

A groundwater monitoring standpipe was installed in BH 13 and showed a standing water level at 0.10 m bgl. This high water level should be taken into consideration with regard to the proposed basement structure for block 2. Excavations should be visually inspected and appropriate shoring and benching of the slopes should be applied to ensure stability and immediate concrete blinding should be implemented.

5.8 Block 1

The soil profile is much the same in this proposed development area with a soft/firm CLAY/SILT overlying the stiff to hard sandy gravelly CLAY

Foundations for this proposed structure should be taken down to the competent sub stratum between 2.50 to 3.0 m bgl. With high $\mathrm{SPT}-\mathrm{N}$ values this material is capable of carrying loads of up to $250 \mathrm{kN} / \mathrm{m}^{2}$.

Groundwater strikes were observed in all boreholes. The groundwater monitoring standpipe in BH 8 suggests a standing water level at 0.20 m bgl. This water level should be regarded when dealing with the issue of uplift in basement structures.

Due to the nature of the glacial till basement excavations should be readily controlled and settlement minimal. Excavation slopes should perhaps be $1.5: 1$ to ensure trench stability. Visual inspection of all excavations should take place and standard safety precautions relating to personnel working in trenches should be adopted

Appendix 13.1

Traffic Counts
Transport

SITE 1

123

(C) (A)

(B)

yued u!! !ub|es

Google

Origin	Arm A	23(E)						
	Destina	n:	Arm A	R123(E)				
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	0
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
05:00	0	0	0	0	0	0	0	0
05:15	0	0	0	0	0	0	0	0
05:30	0	0	0	0	0	0	0	0
05:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
06:00	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0		0
06:30	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
07:00	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0

Destination : Arm B Balgriffin Park							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
5	0	0	0	0	0	0	5
3	0	0	0	0	0	0	3
4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2
14	0	0	0	0	0	0	14
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	1	0	0	0	0	0	3
5	1	0	0	0	0	0	6
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
7	1	0	0	0	0	0	8
2	1	0	0	0	0	0	3
7	0	0	0	0	0	1	8
17	2	0	0	0	0	1	20
11	0	0	0	0	0	0	11
21	2	0	0	1	0	1	25
30	3	0	0	0	0	1	34
43	5	0	0	1	0	1	50
105	10	0	0	2	0	3	120
48	0	0	1	0	0	0	49
65	1	0	0	0	0	1	67
52	3	0	0	0	0	0	55

Destination:	Arm C	R123(W)				Total
Car	LGV	OGV1	OGV2	PSV	MC	

(Return To Dashboard

$08: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$09: 00$	0	0	0	0	0	0	0	0
$09: 15$	0	0	0	0	0	0	0	0
$09: 30$	0	0	0	0	0	0	0	0
$09: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$10: 00$	0	0	0	0	0	0	0	0
$10: 15$	0	0	0	0	0	0	0	0
$10: 30$	0	0	0	0	0	0	0	0
$10: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$11: 00$	0	0	0	0	0	0	0	0
$11: 15$	0	0	0	0	0	0	0	0
$11: 30$	0	0	0	0	0	0	0	0
$11: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$12: 00$	0	0	0	0	0	0	0	0
$12: 15$	0	0	0	0	0	0	0	0
$12: 30$	0	0	0	0	0	0	0	0
$12: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$13: 00$	0	0	0	0	0	0	0	0
$13: 15$	0	0	0	0	0	0	0	0
$13: 30$	0	0	0	0	0	0	0	0
$13: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$14: 00$	0	0	0	0	0	0	0	0
$14: 15$	0	0	0	0	0	0	0	0
$14: 30$	0	0	0	0	0	0	0	0
$14: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$15: 00$	0	0	0	0	0	0	0	0
$15: 15$	0	0	0	0	0	0	0	0
$15: 30$	0	0	0	0	0	0	0	0
$15: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$16: 00$	0	0	0	0	0	0	0	0
$16: 15$	0	0	0	0	0	0	0	0
$16: 30$	0	0	0	0	0	0	0	0
$16: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$17: 00$	0	0	0	0	0	0	0	0
$17: 15$	0	0	0	0	0	0	0	0
$17: 30$	0	0	0	0	0	0	0	0
$17: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
		0	0					

49	1	1	0	0	0	0	51
214	5	1	1	0	0	1	222
44	3	1	0	0	0	0	48
34	5	0	0	0	0	0	39
21	5	0	0	0	0	0	26
17	3	0	0	0	0	1	21
116	16	1	0	0	0	1	134
15	4	1	0	0	0	0	20
28	4	0	0	0	0	0	32
20	3	0	0	0	0	1	24
27	5	0	0	0	0	0	32
90	16	1	0	0	0	1	108
16	3	0	0	0	0	2	21
18	0	0	0	0	0	0	18
15	2	1	0	0	0	0	18
24	2	0	0	0	0	1	27
73	7	1	0	0	0	3	84
25	3	0	0	0	0	0	28
17	1	1	0	0	0	0	19
21	2	0	0	0	0	0	23
31	2	0	0	0	0	1	34
94	8	1	0	0	0	1	104
25	2	0	0	0	0	0	27
37	2	0	0	0	0	0	39
16	5	0	0	0	0	0	21
29	3	0	0	0	0	0	32
107	12	0	0	0	0	0	119
34	1	0	0	0	0	0	35
36	2	0	0	0	0	0	38
32	2	0	0	0	0	0	34
44	3	0	1	0	0	0	48
146	8	0	1	0	0	0	155
36	6	0	0	1	0	1	44
29	2	0	0	0	0	1	32
38	2	0	0	0	1	0	41
32	5	0	0	0	0	0	37
135	15	0	0	1	1	2	154
43	5	1	0	0	0	0	49
54	5	1	0	1	0	3	64
40	6	1	0	0	0	1	48
35	4	0	0	0	0	1	40
172	20	3	0	1	0	5	201
31	4	1	0	0	0	2	38
31	4	0	0	0	0	1	36
32	5	0	0	0	0	1	38
26	1	0	0	0	0	1	28
120	14	1	0	0	0	5	140

111	8	2	0	0	1	3	125
409	18	4	1	1	5	11	449
103	9	2	2	0	0	1	117
96	9	2	2	0	1	0	110
80	10	0	0	0	0	0	90
67	7	0	2	0	0	0	76
346	35	4	6	0	1	1	393
58	3	2	1	0	1	0	65
68	4	3	1	1	2	0	79
62	10	2	1	0	0	0	75
64	6	2	1	0	0	1	74
252	23	9	4	1	3	1	293
45	4	2	0	0	0	0	51
63	3	3	2	0	0	1	72
59	9	1	1	0	1	1	72
51	17	1	0	0	0	0	69
218	33	7	3	0	1	2	264
51	7	1	0	0	1	0	60
40	4	2	0	1	0	0	47
58	5	0	1	0	1	1	66
47	12	1	0	0	0	0	60
196	28	4	1	1	2	1	233
45	13	2	1	0	0	0	61
73	6	1	0	1	0	0	81
68	8	3	1	0	0	1	81
69	7	3	0	0	0	1	80
255	34	9	2	1	0	2	303
64	4	3	0	0	0	0	71
48	9	2	2	0	0	0	61
80	7	2	1	1	0	0	91
80	8	0	0	1	1	0	90
272	28	7	3	2	1	0	313
65	13	3	0	0	1	1	83
51	9	2	2	0	0	0	64
74	11	3	0	0	0	0	88
86	16	3	0	0	0	0	105
276	49	11	2	0	1	1	340
98	20	1	1	1	0	0	121
84	18	1	1	0	0	1	105
70	16	1	1	0	2	1	91
61	13	0	0	0	0	0	74
313	67	3	3	1	2	2	391
62	20	1	1	0	2	1	87
61	9	2	0	0	0	1	73
59	5	1	0	0	0	1	66
50	5	0	1	0	0	0	56
232	39	4	2	0	2	3	282
6							

176
671
165
149
116
97
527
85
111
99
106
401
72
90
90
96
348
88
66
89
94
337
88
120
102
112
422
106
99
125
138
468
127
96
129
142
494
170
169
139
114
592
125
109
104
84
422

Return To Dashboard

18:00	0	0	0	0	0	0	0	0
18:15	0	0	0	0	0	0	0	0
18:30	0	0	0	0	0	0	0	0
18:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
19:00	0	0	0	0	0	0	0	0
19:15	0	0	0	0	0	0	0	0
19:30	0	0	0	0	0	0	0	0
19:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
20:00	0	0	0	0	0	0	0	0
20:15	0	0	0	0	0	0	0	0
20:30	1	0	0	0	0	0	0	1
20:45	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
21:00	0	0	0	0	0	0	0	0
21:15	0	0	0	0	0	0	0	0
21:30	0	0	0	0	0	0	0	0
21:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
22:00	0	0	0	0	0	0	0	0
22:15	0	0	0	0	0	0	0	0
22:30	0	0	0	0	0	0	0	0
22:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
23:00	0	0	0	0	0	0	0	0
23:15	0	0	0	0	0	0	0	0
23:30	0	0	0	0	0	0	0	0
23:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
Total	1	0	0	0	0	0	0	1

Origin Arm B Balgriffin Park

Destination:	Arm A	R123(E)			Total	
Car						

$00: 00$	5	0	0	0	0	0	0	5
$00: 15$	2	0	0	0	0	0	0	2
$00: 30$	2	0	0	0	0	0	0	2
$00: 45$	0	0	0	0	0	0	0	0
1 Hr	9	0	0	0	0	0	0	9
$01: 00$	1	0	0	0	0	0	0	1
$01: 15$	1	0	0	0	0	0	0	1
$01: 30$	0	0	0	0	0	0	0	0
$01: 45$	1	0	0	0	0	0	0	1
1 Hr	3	0	0	0	0	0	0	3

Destination: Arm B Balgriffin Park

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Destination :	Arm C	R123(W)				Total
Car	LGV	OGV1	OGV2	PSV	MC	

1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
3	1	0	0	0	0	0	4
1	0	0	0	0	0	0	1
7	1	0	0	0	0	0	8
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1

(Return To Dashboard

$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$03: 00$	0	0	0	0	0	0	0	0
$03: 15$	1	0	0	0	0	0	0	1
$03: 30$	1	0	0	0	0	0	0	1
$03: 45$	1	0	0	0	0	0	0	1
1 Hr	3	0	0	0	0	0	0	3
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	1	0	0	0	0	0	0	1
$04: 30$	2	1	0	0	0	0	0	3
$04: 45$	0	0	0	0	0	0	0	0
1 Hr	3	1	0	0	0	0	0	4
$05: 00$	1	0	0	0	0	0	0	1
$05: 15$	1	1	0	0	0	0	0	2
$05: 30$	1	0	0	0	0	0	0	1
$05: 45$	3	0	0	0	0	0	0	3
1 Hr	6	1	0	0	0	0	0	7
$06: 00$	1	1	0	0	0	0	0	2
$06: 15$	5	2	0	0	0	0	0	7
$06: 30$	5	0	1	0	0	0	0	6
$06: 45$	5	1	0	0	0	0	0	6
1 Hr	16	4	1	0	0	0	0	21
$07: 00$	8	2	0	0	0	0	1	11
$07: 15$	11	5	1	0	0	0	0	17
$07: 30$	9	4	1	0	0	0	1	15
$07: 45$	32	3	3	0	0	0	1	39
1 Hr	60	14	5	0	0	0	3	82
$08: 00$	26	4	1	0	0	1	1	33
$08: 15$	45	5	0	0	1	0	1	52
$08: 30$	35	2	1	0	0	1	0	39
$08: 45$	38	4	0	0	2	0	0	44
1 Hr	144	15	2	0	3	2	2	168
$09: 00$	20	6	0	1	0	0	1	28
$09: 15$	25	2	0	0	0	0	0	27
$09: 30$	14	2	0	0	0	0	0	16
$09: 45$	14	5	1	0	0	0	1	21
1 Hr	73	15	1	1	0	0	2	92
$10: 00$	13	6	0	0	0	0	1	20
$10: 15$	21	2	0	0	0	0	0	23
$10: 30$	15	1	0	0	0	0	0	16
$10: 45$	13	1	0	0	0	0	0	14
1 Hr	62	10	0	0	0	0	1	73
$11: 00$	27	5	0	0	0	0	0	32
$11: 15$	31	0	0	0	0	0	1	32

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	1	0	0	0	0	0	3
3	0	0	0	0	1	0	4
7	1	0	0	0	1	0	9
3	0	0	0	0	0	0	3
3	1	0	0	0	0	0	4
5	3	0	0	0	0	0	8
7	1	0	0	0	0	0	8
18	5	0	0	0	0	0	23
11	2	0	0	0	0	1	14
9	1	0	0	0	0	0	10
32	1	0	0	1	0	1	35
15	2	1	0	0	1	0	19
67	6	1	0	1	1	2	78
13	1	0	0	0	0	0	14
16	4	2	0	0	1	1	24
16	2	0	0	0	0	0	18
21	2	0	1	0	0	0	24
66	9	2	1	0	1	1	80
26	3	0	0	0	0	0	29
22	0	0	0	0	0	0	22
18	1	1	0	0	0	0	20
24	2	0	0	0	0	0	26
90	6	1	0	0	0	0	97
25	1	0	0	0	0	0	26
18	4	0	0	0	0	0	22
18	0	0	0	0	0	0	18
21	2	1	0	0	0	0	24
82	7	1	0	0	0	0	90
13	1	1	0	0	0	0	15
13	1	0	0	0	0	0	14
10							

(Return To Dashboard

$11: 30$	20	3	0	0	0	0	0	23
$11: 45$	20	1	0	0	0	0	0	21
1 Hr	98	9	0	0	0	0	1	108
$12: 00$	29	2	2	0	0	0	0	33
$12: 15$	26	4	1	0	0	0	0	31
$12: 30$	15	3	0	0	0	0	0	18
$12: 45$	26	2	1	0	0	0	0	29
1 Hr	96	11	4	0	0	0	0	111
$13: 00$	33	5	0	0	0	0	0	38
$13: 15$	19	1	2	0	0	0	0	22
$13: 30$	22	3	0	0	0	0	0	25
$13: 45$	24	5	0	0	0	0	0	29
1 Hr	98	14	2	0	0	0	0	114
$14: 00$	36	2	0	0	0	0	0	38
$14: 15$	40	2	1	0	0	0	0	43
$14: 30$	36	7	0	0	0	0	0	43
$14: 45$	44	2	2	0	0	0	0	48
1 Hr	156	13	3	0	0	0	0	172
$15: 00$	20	4	0	0	1	0	0	25
$15: 15$	44	7	0	0	0	0	0	51
$15: 30$	32	4	0	0	0	1	0	37
$15: 45$	41	2	1	0	0	0	0	44
1 Hr	137	17	1	0	1	1	0	157
$16: 00$	29	4	0	0	1	0	0	34
$16: 15$	36	4	2	0	0	0	0	42
$16: 30$	34	2	1	0	0	0	0	37
$16: 45$	38	8	0	0	0	1	0	47
1 Hr	137	18	3	0	1	1	0	160
$17: 00$	38	2	0	0	0	0	1	41
$17: 15$	34	5	0	0	0	0	0	39
$17: 30$	41	5	0	0	1	1	0	48
$17: 45$	55	4	0	0	0	0	1	60
1 Hr	168	16	0	0	1	1	2	188
$18: 00$	50	7	0	0	0	0	0	57
$18: 15$	55	1	0	0	0	0	0	56
$18: 30$	37	3	0	0	0	1	2	43
$18: 45$	42	0	0	0	0	0	0	42
1 Hr	184	11	0	0	0	1	2	198
$19: 00$	49	2	0	0	0	0	0	51
$19: 15$	41	6	0	0	0	0	0	47
$19: 30$	25	1	0	0	0	1	2	29
$19: 45$	26	3	0	0	0	0	0	29
1 Hr	141	12	0	0	0	1	2	156
$20: 00$	23	2	0	0	0	0	0	25
$20: 15$	24	2	0	0	0	0	0	26
$20: 30$	36	0	0	0	0	0	0	36
$20: 45$	19	1	0	0	0	0	0	20
10								

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0							

22	0	0	0	0	0	0	22
17	2	0	0	0	0	0	19
65	4	1	0	0	0	0	70
23	4	0	0	0	0	0	27
18	1	0	1	0	0	1	21
21	0	1	0	0	0	1	23
21	2	1	0	0	0	0	24
83	7	2	1	0	0	2	95
12	1	0	0	0	0	0	13
22	2	0	0	0	0	0	24
24	4	0	0	0	1	0	29
17	4	1	0	0	0	0	22
75	11	1	0	0	1	0	88
22	2	1	0	0	0	1	26
29	3	0	0	0	0	0	32
21	3	0	1	0	0	1	26
22	2	0	0	0	0	0	24
94	10	1	1	0	0	2	108
13	5	1	0	0	0	0	19
17	2	3	0	0	0	0	22
27	2	0	1	1	0	1	32
29	4	0	1	0	0	1	35
86	13	4	2	1	0	2	108
31	3	0	0	0	0	1	35
27	2	1	1	0	1	0	32
34	9	0	0	0	0	0	43
22	2	0	1	0	0	0	25
114	16	1	2	0	1	1	135
28	2	0	0	0	0	1	31
30	2	0	0	0	0	0	32
45	3	0	0	0	0	1	49
35	0	0	0	0	0	1	36
138	7	0	0	0	0	3	148
24	1	0	0	0	0	0	25
33	0	0	0	0	0	3	36
28	2	0	0	0	0	1	31
31	2	0	0	0	0	0	33
116	5	0	0	0	0	4	125
35	4	0	0	0	0	0	39
12	1	0	0	0	1	0	14
31	0	0	0	0	0	1	32
11	4	0	0	0	0	0	15
89	9	0	0	0	1	1	100
12	0	0	0	0	1	0	13
11	1	0	0	0	0	0	12
15	0	1	0	0	0	0	16
19	0	0	0	0	0	0	19
19							

(Return To Dashboard
3326-IRE Belltree Clongriffin Traffic Survey

1 Hr	102	5	0	0	0	0	0	107
$21: 00$	16	0	0	0	0	0	1	17
$21: 15$	19	0	0	0	0	0	0	19
$21: 30$	12	0	0	0	0	0	0	12
$21: 45$	23	0	0	0	0	0	0	23
1 Hr	70	0	0	0	0	0	1	71
$22: 00$	8	0	0	0	0	0	0	8
$22: 15$	8	0	0	0	0	0	0	8
$22: 30$	13	0	0	0	0	0	0	13
$22: 45$	4	0	0	0	1	0	0	5
1 Hr	33	0	0	0	1	0	0	34
$23: 00$	5	1	0	0	0	0	0	6
$23: 15$	6	0	0	0	0	0	0	6
$23: 30$	1	0	0	0	0	0	0	1
$23: 45$	3	0	0	0	0	0	0	3
1 Hr	15	1	0	0	0	0	0	16

Total	1816	187	22	1	7	7	16	2056

Origin	Arm C R123(W)							
	Destination: Arm A R123(E)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	8	0	0	0	0	0	0	8
00:15	4	0	0	0	0	0	0	4
00:30	9	0	0	0	0	0	0	9
00:45	4	1	0	0	0	0	0	5
1 Hr	25	1	0	0	0	0	0	26
01:00	2	0	0	0	0	0	0	2
01:15	2	0	0	0	0	0	0	2
01:30	5	0	0	0	0	0	0	5
01:45	3	0	0	0	0	0	0	3
1 Hr	12	0	0	0	0	0	0	12
02:00	3	0	0	0	0	0	0	3
02:15	3	0	0	0	0	0	0	3
02:30	5	0	0	0	0	0	0	5
02:45	4	0	0	0	0	0	0	4
1 Hr	15	0	0	0	0	0	0	15
03:00	2	0	1	0	0	0	0	3
03:15	7	0	0	0	0	0	0	7
03:30	5	0	0	0	0	0	0	5
03:45	3	0	0	0	0	0	0	3
1 Hr	17	0	1	0	0	0	0	18
04:00	2	0	0	0	0	0	0	2
04:15	2	0	0	0	0	0	0	2
04:30	,	0	0	0	0	0	1	3
04:45	3	1	0	0	0	0	1	5

Destination:						Arm B
Balgriffin Park						
Car	LGV	OGV1	OGV2	PSV	MC	PC

0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1

Destination:	Arm C	R123(W)			Total	
Car	LGV	OGV1	OGV2	PSV		PC

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(Return To Dashboard

1 Hr	9	1	0	0	0	0	2	12
$05: 00$	0	0	0	0	0	0	0	0
$0: 15$	3	0	0	0	1	0	1	5
$0: 30$	2	0	0	0	0	0	0	2
$0: 30$	9	3	1	0	0	0	0	13
$0: 45$	14	3	1	0	1	0	1	20
1 Hr	14	0	0	0	0	0	0	12
$06: 00$	9	3	0	0	0	16		
$06: 15$	12	4	0	0	0	0	0	22
$06: 30$	16	6	0	0	0	0	0	33
$06: 45$	23	9	1	0	0	0	0	33
1 Hr	60	22	1	0	0	0	0	83
$07: 00$	27	11	2	0	0	1	0	41
$07: 15$	34	11	0	2	0	0	1	48
$07: 30$	39	17	0	0	1	0	1	58
$07: 45$	47	14	1	1	0	0	0	63
1 Hr	147	53	3	3	1	1	2	210
$08: 00$	67	7	3	0	0	0	0	77
$08: 15$	75	7	2	2	0	1	0	87
$08: 30$	91	8	0	0	1	0	0	100
$08: 45$	67	7	3	1	0	0	0	78
1 Hr	300	29	8	3	1	1	0	342
$09: 00$	46	6	1	3	0	0	3	59
$09: 15$	44	10	2	2	0	0	1	59
$09: 30$	49	13	2	0	0	0	1	65
$09: 45$	40	10	4	0	1	0	0	55
1 Hr	179	39	9	5	1	0	5	238
$10: 00$	47	8	1	0	0	0	0	56
$10: 15$	34	7	4	1	0	0	0	46
$10: 30$	38	12	1	2	0	0	1	54
$10: 45$	47	11	2	0	0	0	0	60
1 Hr	166	38	8	3	0	0	1	216
$11: 00$	48	11	0	0	0	0	0	59
$11: 15$	40	7	2	0	0	0	0	49
$11: 30$	42	6	3	0	1	0	0	52
$11: 45$	57	6	2	0	0	0	0	65
1 Hr	187	30	7	0	1	0	0	225
$12: 00$	49	7	2	1	0	0	0	59
$12: 15$	54	4	2	0	0	1	0	61
$12: 30$	52	12	0	0	1	0	0	65
$12: 45$	63	3	0	0	0	0	0	66
1 Hr	218	26	4	1	1	1	0	251
$13: 00$	62	7	1	0	0	0	1	71
$13: 15$	53	5	1	2	0	0	0	61
$13: 30$	67	7	2	1	1	0	1	79
$13: 45$	58	6	1	1	0	0	0	66
1 Hr	240	25	5	4	1	0	2	277
$14: 00$	71	4	1	1	0	0	0	77

0	1	0	0	0	0	0	1
0	1	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
1	2	0	0	0	0	0	3
2	0	0	0	0	0	0	2
7	0	0	0	0	0	0	7
5	0	0	0	0	1	0	6
13	1	0	0	0	0	1	15
27	1	0	0	0	1	1	30
12	6	0	0	0	0	0	18
19	7	0	0	0	0	0	26
25	4	0	0	1	0	0	30
45	5	0	1	2	0	0	53
101	22	0	1	3	0	0	127
39	5	2	0	0	0	0	46
36	3	0	0	0	0	0	39
28	2	0	1	0	0	0	31
23	5	0	0	0	0	0	28
126	15	2	1	0	0	0	144
29	4	2	0	0	0	0	35
20	1	1	0	0	0	0	22
10	1	0	0	0	0	0	11
11	2	0	0	0	0	0	13
70	8	3	0	0	0	0	81
15	0	1	0	0	0	0	16
12	0	1	0	0	0	0	13
13	3	0	0	0	0	0	16
13	4	1	0	0	0	0	18
53	7	3	0	0	0	0	63
19	2	0	1	0	0	0	22
11	3	0	0	0	0	0	14
17	3	0	0	0	0	0	20
13	0	0	0	0	0	0	13
60	8	0	1	0	0	0	69
22	2	0	0	0	0	0	24
20	3	0	0	0	0	0	23
16	2	0	0	0	1	1	20
19	1	0	0	0	0	0	20
77	8	0	0	0	1	1	87
14	1	0	0	0	1	0	166
23	1	0	0	0	0	0	24
27	2	0	0	0	0	0	29
19	4	1	0	0	0	0	24
83	8	1	0	0	1	0	93
34	1	0	0	0	0	0	35
			0				

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(Return To Dashboard

$14: 15$	67	8	0	0	0	0	0	75
$14: 30$	61	9	1	1	0	0	1	73
$14: 45$	55	7	4	1	0	0	0	67
1 Hr	254	28	6	3	0	0	1	292
$15: 00$	66	6	2	0	1	0	0	75
$15: 15$	66	5	2	0	0	1	0	74
$15: 30$	76	2	2	2	1	0	0	83
$15: 45$	91	11	2	1	1	1	1	108
1 Hr	299	24	8	3	3	2	1	340
$16: 00$	98	5	1	0	0	1	1	106
$16: 15$	85	11	1	0	0	0	1	98
$16: 30$	96	10	0	0	1	0	1	108
$16: 45$	85	4	3	0	0	1	3	96
1 Hr	364	30	5	0	1	2	6	408
$17: 00$	89	10	0	0	0	1	1	101
$17: 15$	96	11	1	0	0	1	2	111
$17: 30$	106	8	1	0	1	0	2	118
$17: 45$	116	7	0	0	1	2	4	130
1 Hr	407	36	2	0	2	4	9	460
$18: 00$	122	11	1	0	0	1	4	139
$18: 15$	127	7	2	0	1	0	4	141
$18: 30$	94	4	0	0	0	1	8	107
$18: 45$	95	8	0	0	0	1	1	105
1 Hr	438	30	3	0	1	3	17	492
$19: 00$	94	2	0	0	0	0	0	96
$19: 15$	88	4	0	0	0	0	1	93
$19: 30$	97	4	1	0	0	1	0	103
$19: 45$	69	4	0	0	0	0	0	73
1 Hr	348	14	1	0	0	1	1	365
$20: 00$	59	2	1	0	0	0	0	62
$20: 15$	56	5	1	0	0	0	1	63
$20: 30$	42	2	0	0	0	0	0	44
$20: 45$	51	3	0	0	0	0	0	54
1 Hr	208	12	2	0	0	0	1	223
$21: 00$	55	5	0	0	0	1	0	61
$21: 15$	47	1	0	0	0	0	0	48
$21: 30$	28	2	0	0	1	0	0	31
$21: 45$	27	1	0	0	0	0	0	28
1 Hr	157	9	0	0	1	1	0	168
$22: 00$	39	0	0	0	0	0	0	39
$22: 15$	30	1	0	0	0	0	0	31
$22: 30$	25	0	0	0	0	0	1	26
$22: 45$	29	0	0	0	0	0	0	29
1 Hr	123	1	0	0	0	0	1	125
$23: 00$	24	0	0	0	0	0	0	24
$23: 15$	9	0	0	0	0	0	0	9
$23: 30$	11	0	0	0	0	0	0	11

$\Delta \bullet$ ©
(Return To Dashboard
3326-IRE Belltree Clongriffin Traffic Survey
(D) Convert to PCU

ORIGIN SUMMARY

ORIGIN SUMMARYOrigin : Arm A R123(E)								Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	14	0	0	0	0	0	0	14
00:15	6	1	0	0	0	0	0	7
00:30	6	0	0	0	0	0	1	7
00:45	12	0	0	0	0	0	0	12
1 Hr	38	1	0	0	0	0	1	40
01:00	3	0	0	0	0	0	0	3
01:15	5	0	0	0	0	0	0	5
01:30	4	0	0	0	0	0	0	4
01:45	4	0	0	0	0	0	0	4
1 Hr	16	0	0	0	0	0	0	16
02:00	2	0	0	0	0	0	0	2
02:15	0	0	0	0	0	0	0	0
02:30	3	1	0	0	0	0	0	4
02:45	2	0	0	0	0	0	0	2
1 Hr	7	1	0	0	0	0	0	8
03:00	4	0	0	0	0	0	0	4
03:15	4	0	0	0	0	0	0	4
03:30	7	1	0	0	0	0	0	8
03:45	7	0	0	0	0	0	0	7
1 Hr	22	1	0	0	0	0	0	23
04:00	4	0	1	0	0	0	0	5
04:15	2	0	0	0	0	0	0	2
04:30	3	1	0	0	0	0	0	4
04:45	4	2	0	0	0	0	0	6
1 Hr	13	3	1	0	0	0	0	17
05:00	4	0	0	0	0	0	0	4
05:15	7	0	0	0	0	0	0	7
05:30	10	1	0	0	0	0	0	11
05:45	16	1	0	0	0	0	1	18
1 Hr	37	2	0	0	0	0	1	40
06:00	13	4	0	0	1	1	,	20
06:15	46	3	0	0	0	1	3	53
06:30	71	4	0	0	0	0	1	76
06:45	70	8	0	0	0	0	2	80
1 Hr	200	19	0	0	1	2	7	229
07:00	89	6	1	0	2	1	2	101
07:15	121	12	0	0	3	1	2	139
07:30	138	9	3	1	0	0	5	156

1329	132	11	7	3	6	5	1493

Origin:	Arm B			Balgriffin Park		
Car	LGV	OGV1	OGV2	PSV	MC	PC

6	0	0	0	0	0	0	6
4	0	0	0	0	0	0	4
5	1	0	0	0	0	0	6
1	0	0	0	0	0	0	1
16	1	0	0	0	0	0	17
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
5	1	0	0	0	0	0	6
1	0	0	0	0	0	0	1
3	1	0	0	0	0	0	4
3	1	0	0	0	0	0	4
6	0	0	0	0	1	0	7
13	2	0	0	0	1	0	16
4	1	0	0	0	0	0	5
8	3	0	0	0	0	0	11
10	3	1	0	0	0	0	14
12	2	0	0	0	0	0	14
34	9	1	0	0	0	0	44
19	4	0	0	0	0	2	25
20	6	1	0	0	0	0	27
41	5	1	0	1	0	2	50

6365

Origin:	Arm C	R123(W)			Total	
Car	LGV	OGV1	OGV2	PSV		PC

8	1	0	0	0	0	0	9
4	0	0	0	0	0	0	4
9	0	0	0	0	0	0	9
4	1	0	0	0	0	0	5
25	2	0	0	0	0	0	27
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
6	0	0	0	0	0	0	6
3	0	0	0	0	0	0	3
14	0	0	0	0	0	0	14
4	0	0	0	0	0	0	4
3	0	0	0	0	0	0	3
6	0	0	0	0	0	0	6
5	0	0	0	0	0	0	5
18	0	0	0	0	0	0	18
3	0	1	0	0	0	0	4
8	0	0	0	0	0	0	8
6	0	0	0	0	0	0	6
3	0	0	0	0	0	0	3
20	0	1	0	0	0	0	21
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
2	0	0	0	0	0	1	3
3	2	0	0	0	0	1	6
9	2	0	0	0	0	2	13
0	1	0	0	0	0	0	1
4	0	0	0	1	0	1	6
2	0	0	0	0	0	0	2
9	4	1	0	0	0	0	14
15	5	1	0	1	0	1	23
11	3	0	0	0	0	0	14
19	4	0	0	0	0	0	23
21	6	0	0	0	1	0	28
36	10	1	0	0	0	1	48
87	23	1	0	0	1	1	113
39	17	2	0	0	1	0	59
53	18	0	2	0	0	1	74
64	21	0	0	2	0	1	88

29
15
22
18
84
7
8
11
8
34
7
4
10
7
28
8
14
15
11
48
7
6
10
13
36
6
17
17
39
79
39
87
118
142
386
185
240
294

(Return To Dashboard

$07: 45$	141	11	1	0	1	0	5	159
1 Hr	489	38	5	1	6	2	14	555
$08: 00$	139	4	1	1	1	1	3	150
$08: 15$	148	5	0	1	0	0	3	157
$08: 30$	176	5	1	0	0	3	3	188
$08: 45$	160	9	3	0	0	1	3	176
1 Hr	623	23	5	2	1	5	12	671
$09: 00$	147	12	3	2	0	0	1	165
$09: 15$	130	14	2	2	0	1	0	149
$09: 30$	101	15	0	0	0	0	0	116
$09: 45$	84	10	0	2	0	0	1	97
1 Hr	462	51	5	6	0	1	2	527
$10: 00$	73	7	3	1	0	1	0	85
$10: 15$	96	8	3	1	1	2	0	111
$10: 30$	82	13	2	1	0	0	1	99
$10: 45$	91	11	2	1	0	0	1	106
1 Hr	342	39	10	4	1	3	2	401
$11: 00$	61	7	2	0	0	0	2	72
$11: 15$	81	3	3	2	0	0	1	90
$11: 30$	74	11	2	1	0	1	1	90
$11: 45$	75	19	1	0	0	0	1	96
1 Hr	291	40	8	3	0	1	5	348
$12: 00$	76	10	1	0	0	1	0	88
$12: 15$	57	5	3	0	1	0	0	66
$12: 30$	79	7	0	1	0	1	1	89
$12: 45$	78	14	1	0	0	0	1	94
1 Hr	290	36	5	1	1	2	2	337
$13: 00$	70	15	2	1	0	0	0	88
$13: 15$	110	8	1	0	1	0	0	120
$13: 30$	84	13	3	1	0	0	1	102
$13: 45$	98	10	3	0	0	0	1	112
1 Hr	362	46	9	2	1	0	2	422
$14: 00$	98	5	3	0	0	0	0	106
$14: 15$	84	11	2	2	0	0	0	99
$14: 30$	112	9	2	1	1	0	0	125
$14: 45$	124	11	0	1	1	1	0	138
1 Hr	418	36	7	4	2	1	0	468
$15: 00$	101	19	3	0	1	1	2	127
$15: 15$	80	11	2	2	0	0	1	96
$15: 30$	112	13	3	0	0	1	0	129
$15: 45$	118	21	3	0	0	0	0	142
1 Hr	411	64	11	2	1	2	3	494
$16: 00$	141	25	2	1	1	0	0	170
$16: 15$	138	23	2	1	1	0	4	169
$16: 30$	110	22	2	1	0	2	2	139
$16: 45$	96	17	0	0	0	0	1	114
1 Hr	485	87	6	3	2	2	7	592

47	5	4	0	0	1	1	58
127	20	6	0	1	1	5	160
39	5	1	0	0	1	1	47
61	9	2	0	1	1	2	76
51	4	1	0	0	1	0	57
59	6	0	1	2	0	0	68
210	24	4	1	3	3	3	248
46	9	0	1	0	0	1	57
47	2	0	0	0	0	0	49
32	3	1	0	0	0	0	36
38	7	1	0	0	0	1	47
163	21	2	1	0	0	2	189
38	7	0	0	0	0	1	46
39	6	0	0	0	0	0	45
33	1	0	0	0	0	0	34
34	3	1	0	0	0	0	38
144	17	1	0	0	0	1	163
40	6	1	0	0	0	0	47
44	1	0	0	0	0	1	46
42	3	0	0	0	0	0	45
37	3	0	0	0	0	0	40
163	13	1	0	0	0	1	178
52	6	2	0	0	0	0	60
44	5	1	1	0	0	1	52
36	3	1	0	0	0	1	41
47	4	2	0	0	0	0	53
179	18	6	1	0	0	2	206
45	6	0	0	0	0	0	51
41	3	2	0	0	0	0	46
46	7	0	0	0	1	0	54
41	9	1	0	0	0	0	51
173	25	3	0	0	1	0	202
58	4	1	0	0	0	1	64
69	5	1	0	0	0	0	75
57	10	0	1	0	0	1	69
66	4	2	0	0	0	0	72
250	23	4	1	0	0	2	280
34	9	1	0	1	0	0	45
61	9	3	0	0	0	0	73
59	6	0	1	1	1	1	69
70	6	1	1	0	0	1	79
224	30	5	2	2	1	2	266
60	7	0	0	1	0	1	69
63	6	3	1	0	1	0	74
68	11	1	0	0	0	0	80
60	10	0	1	0	1	0	72
251	34	4	2	1	2	1	295

	92	19	1	2	2	0	0
248	75	3	4	4	1	2	337
106	12	5	0	0	0	0	123
111	10	2	2	0	1	0	126
119	10	0	1	1	0	0	131
90	12	3	1	0	0	0	106
426	44	10	4	1	1	0	486
75	10	3	3	0	0	3	94
64	11	3	2	0	0	1	81
59	14	2	0	0	0	1	76
51	12	4	0	1	0	0	68
249	47	12	5	1	0	5	319
62	8	2	0	0	0	0	72
46	7	5	1	0	0	0	59
51	15	1	2	0	0	1	70
60	15	3	0	0	0	0	78
219	45	11	3	0	0	1	279
67	13	0	1	0	0	0	81
51	10	2	0	0	0	0	63
59	9	3	0	1	0	0	72
70	6	2	0	0	0	0	78
247	38	7	1	1	0	0	294
71	9	2	1	0	0	0	83
74	7	2	0	0	1	0	84
68	14	0	0	1	1	1	85
82	4	0	0	0	0	0	86
295	34	4	1	1	2	1	338
76	8	1	0	0	1	1	87
76	6	1	2	0	0	0	85
94	9	2	1	1	0	1	108
77	10	2	1	0	0	0	90
323	33	6	4	1	1	2	370
105	5	1	1	0	0	0	112
87	9	0	0	0	0	0	96
81	11	1	1	0	0	1	95
70	8	4	1	0	0	0	83
343	33	6	3	0	0	1	386
88	7	2	1	1	0	0	99
89	7	2	1	0	1	0	100
100	4	2	3	1	0	0	110
115	12	3	1	1	1	1	134
392	30	9	6	3	2	1	443
124	6	1	0	0	1	1	133
110	12	1	1	0	0	1	125
121	13	0	0	1	0	1	136
111	6	3	0	0	1	3	124
466	37	5	1	1	2	6	518
6							

333
1052
320
359
376
350
1405
316
279
228
212
1035
203
215
203
222
843
200
199
207
214
820
231
202
215
233
881
226
251
264
253
994
282
270
289
293
1134
271
269
308
355
1203
372
368
355
310
1405

(Return To Dashboard

$17: 00$	93	24	2	1	0	2	3	125
$17: 15$	92	13	2	0	0	0	2	109
$17: 30$	91	10	1	0	0	0	2	104
$17: 45$	76	6	0	1	0	0	1	84
1 Hr	352	53	5	2	0	2	8	422
$18: 00$	118	5	0	0	0	0	1	124
$18: 15$	109	14	1	0	0	0	0	124
$18: 30$	93	7	0	0	0	0	2	102
$18: 45$	103	10	1	0	1	0	2	117
1 Hr	423	36	2	0	1	0	5	467
$19: 00$	80	9	0	0	0	0	1	90
$19: 15$	96	6	0	0	1	1	2	106
$19: 30$	105	10	1	0	0	1	0	117
$19: 45$	101	4	0	0	0	1	2	108
1 Hr	382	29	1	0	1	3	5	421
$20: 00$	72	0	1	0	0	0	1	74
$20: 15$	50	5	0	0	0	2	1	58
$20: 30$	83	6	2	1	0	0	0	92
$20: 45$	78	5	0	0	0	0	1	84
1 Hr	283	16	3	1	0	2	3	308
$21: 00$	79	3	0	0	1	1	1	85
$21: 15$	69	5	0	0	0	0	1	75
$21: 30$	60	2	0	0	0	0	3	65
$21: 45$	54	1	0	0	0	0	0	55
1 Hr	262	11	0	0	1	1	5	280
$22: 00$	39	2	0	0	0	0	0	41
$22: 15$	31	0	0	0	0	1	1	33
$22: 30$	25	2	0	0	0	0	0	27
$22: 45$	21	1	0	0	0	0	0	22
1 Hr	116	5	0	0	0	1	1	123
$23: 00$	22	1	0	0	0	0	0	23
$23: 15$	16	0	0	0	0	0	1	17
$23: 30$	18	0	0	0	0	0	0	18
$23: 45$	9	0	0	0	0	0	0	9
1 Hr	65	1	0	0	0	0	1	67
Total	6389	638	83	31	19	30	86	7276

DESTINATION SUMMARY Destination: Arm A R123(E)	Destination : Arm A R123(E)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	13	0	0	0	0	0	0	13
00:15	6	0	0	0	0	0	0	6
00:30	11	0	0	0	0	0	0	11
00:45	4	1	0	0	0	0	0	5
1 Hr	34	1	0	0	0	0	0	35

3152	308	38	8	9	14	34	3563

Destination:	Arm B	Balgriffin Park		Total		
Car	LGV	OGV1	OGV2		MC	PC

5	1	0	0	0	0	0	6
3	0	0	0	0	0	0	3
4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2
14	1	0	0	0	0	0	15

111	14	1	0	0	1	1	128
133	13	1	0	0	1	2	150
138	10	1	0	1	1	2	153
152	9	0	0	1	2	4	168
534	46	3	0	2	5	9	599
153	13	1	0	0	1	5	173
150	8	2	0	1	1	4	166
130	5	0	0	0	1	9	145
124	12	0	0	0	1	1	138
557	38	3	0	1	4	19	622
110	3	0	0	0	0	0	113
110	4	0	0	0	0	1	115
111	5	1	0	0	1	0	118
83	6	0	0	0	0	0	89
414	18	1	0	0	1	1	435
78	4	1	0	0	0	0	83
73	5	1	0	0	1	1	81
59	4	0	0	0	0	0	63
61	4	0	0	0	0	0	65
271	17	2	0	0	1	1	292
67	5	0	0	0	1	1	74
53	2	0	0	0	0	0	55
36	4	0	0	1	0	0	41
33	2	0	0	0	0	0	35
189	13	0	0	1	1	1	205
44	1	0	0	0	0	0	45
35	1	0	0	0	0	0	36
34	0	0	0	0	0	1	35
35	0	0	0	0	0	0	35
148	2	0	0	0	0	1	151
28	1	0	0	0	0	0	29
9	0	0	0	0	0	0	9
11	0	0	0	0	0	0	11
13	0	0	0	0	0	0	13
61	1	0	0	0	0	0	62
						55	6365
5570	583	85	32	18	22	5	

Destination :	Arm C	R123(W)			Total		
Car	LGV	OGV1	OGV2	PSV		PC	

10	0	0	0	0	0	0	10
5	1	0	0	0	0	0	6
5	1	0	0	0	0	1	7
11	0	0	0	0	0	0	11
31	2	0	0	0	0	1	34

17204
(Return To Dashboard

01:00	3	0	0	0	0	0	0	3
01:15	3	0	0	0	0	0	0	3
01:30	5	0	0	0	0	0	0	5
01:45	4	0	0	0	0	0	0	4
1 Hr	15	0	0	0	0	0	0	15
02:00	4	0	0	0	0	0	0	4
02:15	4	0	0	0	0	0	0	4
02:30	5	0	0	0	0	0	0	5
02:45	4	0	0	0	0	0	0	4
1 Hr	17	0	0	0	0	0	0	17
03:00	2	0	1	0	0	0	0	3
03:15	8	0	0	0	0	0	0	8
03:30	6	0	0	0	0	0	0	6
03:45	4	0	0	0	0	0	0	4
1 Hr	20	0	1	0	0	0	0	21
04:00	2	0	0	0	0	0	0	2
04:15	3	0	0	0	0	0	0	3
04:30	4	1	0	0	0	0	1	6
04:45	3	1	0	0	0	0	1	5
1 Hr	12	2	0	0	0	0	2	16
05:00	1	0	0	0	0	0	0	1
05:15	4	1	0	0	1	0	1	7
05:30	3	0	0	0	0	0	0	3
05:45	12	3	1	0	0	0	0	16
1 Hr	20	4	1	0	1	0	1	27
06:00	10	4	0	0	0	0	0	14
06:15	17	6	0	0	0	0	0	23
06:30	21	6	1	0	0	0	0	28
06:45	28	10	1	0	0	0	0	39
1 Hr	76	26	2	0	0	0	0	104
07:00	35	13	2	0	0	1	1	52
07:15	45	16	1	2	0	0	1	65
07:30	48	21	1	0	1	0	2	73
07:45	79	17	4	1	0	0	1	102
1 Hr	207	67	8	3	1	1	5	292
08:00	93	11	4	0	0	1	1	110
08:15	120	12	2	2	1	1	1	139
08:30	126	10	1	0	1	1	0	139
08:45	105	11	3	1	2	0	0	122
1 Hr	444	44	10	3	4	3	2	510
09:00	66	12	1	4	0	0	4	87
09:15	69	12	2	2	0	0	1	86
09:30	63	15	2	0	0	0	1	81
09:45	54	15	5	0	1	0	1	76
1 Hr	252	54	10	6	1	0	7	330
10:00	60	14	1	0	0	0	1	76
10:15	55	9	4	1	0	0	0	69

(Return To Dashboard

$10: 30$	53	13	1	2	0	0	1	70
$10: 45$	60	12	2	0	0	0	0	74
1 Hr	228	48	8	3	0	0	2	289
$11: 00$	75	16	0	0	0	0	0	91
$11: 15$	71	7	2	0	0	0	1	81
$11: 30$	62	9	3	0	1	0	0	75
$11: 45$	77	7	2	0	0	0	0	86
1 Hr	285	39	7	0	1	0	1	333
$12: 00$	78	9	4	1	0	0	0	92
$12: 15$	80	8	3	0	0	1	0	92
$12: 30$	67	15	0	0	1	0	0	83
$12: 45$	89	5	1	0	0	0	0	95
1 Hr	314	37	8	1	1	1	0	362
$13: 00$	95	12	1	0	0	0	1	109
$13: 15$	72	6	3	2	0	0	0	83
$13: 30$	89	10	2	1	1	0	1	104
$13: 45$	82	11	1	1	0	0	0	95
1 Hr	338	39	7	4	1	0	2	391
$14: 00$	107	6	1	1	0	0	0	115
$14: 15$	107	10	1	0	0	0	0	118
$14: 30$	97	16	1	1	0	0	1	116
$14: 45$	99	9	6	1	0	0	0	115
1 Hr	410	41	9	3	0	0	1	464
$15: 00$	86	10	2	0	2	0	0	100
$15: 15$	110	12	2	0	0	1	0	125
$15: 30$	108	6	2	2	1	1	0	120
$15: 45$	132	13	3	1	1	1	1	152
1 Hr	436	41	9	3	4	3	1	497
$16: 00$	127	9	1	0	1	1	1	140
$16: 15$	121	15	3	0	0	0	1	140
$16: 30$	130	12	1	0	1	0	1	145
$16: 45$	123	12	3	0	0	2	3	143
1 Hr	501	48	8	0	2	3	6	568
$17: 00$	127	12	0	0	0	1	2	142
$17: 15$	130	16	1	0	0	1	2	150
$17: 30$	147	13	1	0	2	1	2	166
$17: 45$	171	11	0	0	1	2	5	190
1 Hr	575	52	2	0	3	5	11	648
$18: 00$	172	18	1	0	0	1	4	196
$18: 15$	182	8	2	0	1	0	4	197
$18: 30$	131	7	0	0	0	2	10	150
$18: 45$	137	8	0	0	0	1	1	147
1 Hr	622	41	3	0	1	4	19	690
$19: 00$	143	4	0	0	0	0	0	147
$19: 15$	129	10	0	0	0	0	1	140
$19: 30$	122	5	1	0	0	2	2	132
$19: 45$	95	7	0	0	0	0	0	102

33	6	0	0	0	0	1	
40	9	1	0	0	0	0	40
143	23	4	0	0	0	1	171
35	5	0	1	0	0	2	43
29	3	0	0	0	0	0	32
32	5	1	0	0	0	0	38
37	2	0	0	0	0	1	40
133	15	1	1	0	0	3	153
47	5	0	0	0	0	0	52
37	4	1	0	0	0	0	42
37	4	0	0	0	1	1	43
50	3	0	0	0	0	1	54
171	16	1	0	0	1	2	191
39	3	0	0	0	1	0	43
60	3	0	0	0	0	0	63
43	7	0	0	0	0	0	50
48	7	1	0	0	0	0	56
190	20	1	0	0	1	0	212
68	2	0	0	0	0	0	70
56	3	0	0	0	0	0	59
52	4	0	0	0	0	0	56
59	4	0	1	0	0	0	64
235	13	0	1	0	0	0	249
59	7	0	1	1	0	1	69
52	4	0	1	0	0	1	58
62	4	0	1	0	1	0	68
56	6	1	0	0	0	0	63
229	21	1	3	1	1	2	258
69	6	1	0	0	0	0	76
79	6	1	1	1	0	3	91
65	9	1	0	0	0	1	76
61	6	0	0	0	0	1	68
274	27	3	1	1	0	5	311
53	8	2	0	0	0	2	65
68	6	0	0	0	0	1	75
64	7	0	0	0	1	1	73
62	3	0	0	0	0	1	66
247	24	2	0	0	1	5	279
73	3	0	0	0	0	2	78
71	6	0	0	0	1	0	78
73	3	0	0	0	0	3	79
70	7	0	0	0	0	1	78
287	19	0	0	0	1	6	313
47	5	0	0	0	0	0	52
71	3	0	0	0	0	0	74
66	5	0	0	0	0	0	71
57	4	0	0	0	0	0	61
10							

80	10	2	1	0	0	0	93
85	8	3	1	0	0	1	98
334	30	10	4	1	3	1	383
58	5	3	0	0	0	0	66
76	4	3	2	0	0	1	86
81	9	1	1	0	1	1	94
68	19	1	0	0	0	0	88
283	37	8	3	0	1	2	334
74	11	1	0	0	1	0	87
58	5	2	1	1	0	1	68
79	5	1	1	0	1	2	89
68	14	2	0	0	0	0	84
279	35	6	2	1	2	3	328
57	14	2	1	0	0	0	74
95	8	1	0	1	0	0	105
92	12	3	1	0	1	1	110
86	11	4	0	0	0	1	102
330	45	10	2	1	1	2	391
86	6	4	0	0	0	1	97
77	12	2	2	0	0	0	93
101	10	2	2	1	0	1	117
102	10	0	0	1	1	0	114
366	38	8	4	2	1	2	421
78	18	4	0	0	1	1	102
68	11	5	2	0	0	0	86
101	13	3	1	1	0	1	120
115	20	3	1	0	0	1	140
362	62	15	4	1	1	3	448
129	23	1	1	1	0	1	156
111	20	2	2	0	1	1	137
104	25	1	1	0	2	1	134
83	15	0	1	0	0	0	99
427	83	4	5	1	3	3	526
90	22	1	1	0	2	2	118
91	11	2	0	0	0	1	105
104	8	1	0	0	0	2	115
85	5	0	1	0	0	1	92
370	46	4	2	0	2	6	430
100	5	0	0	0	0	0	105
94	9	1	0	0	0	3	107
84	7	0	0	0	0	1	92
93	9	1	0	1	0	1	105
371	30	2	0	1	0	5	409
84	9	0	0	0	0	1	94
59	4	0	0	1	2	2	68
84	6	1	0	0	1	1	93
69	6	0	0	0	1	2	78

ल్న్న N			O	¢	-		N/	¢			-		- $\sim_{\sim}^{\circ}{ }_{\sim}^{\circ}$	$\stackrel{\sim}{\sim}$		No me	\downarrow		స్ల్ల	Nom	c		$\stackrel{N}{\square}$		N

(Return To Dashboard
3326-IRE Belltree Clongriffin Traffic Survey
(Convert to PCU

1 Hr	489	26	1	0	0	2	3	521
$20: 00$	82	4	1	0	0	0	0	87
$20: 15$	80	7	1	0	0	0	1	89
$20: 30$	79	2	0	0	0	0	0	81
$20: 45$	70	4	0	0	0	0	0	74
1 Hr	311	17	2	0	0	0	1	331
$21: 00$	71	5	0	0	0	1	1	78
$21: 15$	66	1	0	0	0	0	0	67
$21: 30$	40	2	0	0	1	0	0	43
$21: 45$	50	1	0	0	0	0	0	51
1 Hr	227	9	0	0	1	1	1	239
$22: 00$	47	0	0	0	0	0	0	47
$22: 15$	38	1	0	0	0	0	0	39
$22: 30$	38	0	0	0	0	0	1	39
$22: 45$	33	0	0	0	1	0	0	34
1 Hr	156	1	0	0	1	0	1	159
$23: 00$	29	1	0	0	0	0	0	30
$23: 15$	15	0	0	0	0	0	0	15
$23: 30$	12	0	0	0	0	0	0	12
$23: 45$	13	0	0	0	0	0	0	13
1 Hr	69	1	0	0	0	0	0	70
Total	6058	638	96	26	22	23	66	6929

241	17	0	0	0	0	0	258
50	2	1	0	0	0	1	54
40	1	0	0	0	1	0	42
51	6	0	0	0	0	0	57
41	5	0	0	0	0	1	47
182	14	1	0	0	1	2	200
42	1	0	0	0	0	2	45
31	2	0	0	0	0	0	33
28	3	0	0	0	0	2	33
16	1	0	0	0	0	0	17
117	7	0	0	0	0	4	128
16	1	0	0	0	0	0	17
15	0	0	0	0	0	1	16
15	0	0	0	0	0	0	15
19	0	0	0	0	0	0	19
65	1	0	0	0	0	1	67
7	1	0	0	0	0	0	8
8	0	0	0	0	0	1	9
6	0	0	0	0	0	0	6
5	0	0	0	0	0	0	5
26	1	0	0	0	0	1	28
						39	3737
3352	302	21	9	7	7	39	

296	25	1	0	1	4	6	333
53	0	0	0	0	1	0	54
38	5	0	0	0	2	1	46
63	2	3	1	0	0	0	69
66	1	0	0	0	0	0	67
220	8	3	1	0	3	1	236
62	3	0	0	1	1	0	67
56	5	0	0	0	0	1	62
48	2	0	0	0	0	1	51
51	1	0	0	0	0	0	52
217	11	0	0	1	1	2	232
37	2	0	0	0	0	0	39
28	0	0	0	0	1	0	29
22	2	0	0	0	0	0	24
14	1	0	0	0	0	0	15
101	5	0	0	0	1	0	107
23	1	0	0	0	0	0	24
11	0	0	0	0	0	0	11
15	0	0	0	0	0	0	15
9	0	0	0	0	0	0	9
58	1	0	0	0	0	0	59
5701	589	89	36	17	36	70	6538

1112
195
177
207
188
767
190
162
127
120
599
103
84
78
68
333
62
35
33
27
157

SITE 2

y症 ulytu|e8
 (A)

Belmayne
(c)
(B)

Parkside Boulevard

Origin	Destination: Arm A Balgriffin Park							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	0
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
05:00	0	0	0	0	0	0	0	0
05:15	0	0	0	0	0	0	0	0
05:30	0	0	0	0	0	0	0	0
05:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
06:00	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
07:00	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0

Destination: Arm B Belmayne(E)							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
4	0	0	0	0	0	0	4
4	1	0	0	0	0	0	5
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
13	1	0	0	0	0	0	14
3	0	0	0	0	0	0	3
3	2	0	0	0	0	0	5
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
11	2	0	0	0	0	0	13
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2
1	2	0	0	0	0	0	3
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	1	0	0	0	0	1	4
3	2	0	0	0	0	1	6
4	1	0	0	0	0	0	5
11	0	0	0	0	0	0	11
6	0	0	0	0	0	0	6
15	0	0	0	0	0	0	15
36	1	0	0	0	0	0	37
18	4	0	0	0	0	0	22
40	8	0	0	1	0	1	50
49	3	0	0	0	0	0	52
60	7	0	1	3	0	1	72
167	22	0	1	4	0	2	196
60	5	2	0	0	0	1	68
59	2	0	0	0	0	0	61
36	2	1	1	0	0	0	40

Destination:	Arm C	Belmayne			Total	
Car	LGV	OGV1	OGV2	PSV		PC

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
11	1	0	0	0	0	0	12
26	1	0	1	0	0	0	28
39	2	0	1	0	0	0	42
35	2	0	0	0	0	0	37
49	0	0	0	0	0	1	50
30	1	1	0	0	0	0	32

$08: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$09: 00$	0	0	0	0	0	0	0	0
$09: 15$	0	0	0	0	0	0	0	0
$09: 30$	1	0	0	0	0	0	0	1
$09: 45$	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
$10: 00$	0	0	0	0	0	0	0	0
$10: 15$	0	0	0	0	0	0	0	0
$10: 30$	0	0	0	0	0	0	0	0
$10: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$11: 00$	0	0	0	0	0	0	0	0
$11: 15$	0	0	0	0	0	0	0	0
$11: 30$	0	0	0	0	0	0	0	0
$11: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$12: 00$	0	0	0	0	0	0	0	0
$12: 15$	0	0	0	0	0	0	0	0
$12: 30$	0	0	0	0	0	0	0	0
$12: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$13: 00$	0	0	0	0	0	0	0	0
$13: 15$	0	0	0	0	0	0	0	0
$13: 30$	0	0	0	0	0	0	0	0
$13: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$14: 00$	0	0	0	0	0	0	0	0
$14: 15$	0	0	0	0	0	0	0	0
$14: 30$	0	0	0	0	0	0	0	0
$14: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$15: 00$	0	0	0	0	0	0	0	0
$15: 15$	0	0	0	0	0	0	0	0
$15: 30$	0	0	0	0	0	0	0	0
$15: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$16: 00$	0	0	0	0	0	0	0	0
$16: 15$	0	0	0	0	0	0	0	0
$16: 30$	0	0	0	0	0	0	0	0
$16: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$17: 00$	0	0	0	0	0	0	0	0
$17: 15$	0	0	0	0	0	0	0	0
$17: 30$	0	0	0	0	0	0	0	0
$17: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
10								

50	4	0	1	0	0	0	55
205	13	3	2	0	0	1	224
42	8	0	1	0	0	0	51
60	5	0	0	0	0	0	65
23	7	0	1	0	0	0	31
35	4	0	1	0	0	0	40
160	24	0	3	0	0	0	187
37	4	3	0	0	0	0	44
34	6	1	0	0	0	0	41
30	2	0	0	0	0	0	32
29	3	1	1	0	1	0	35
130	15	5	1	0	1	0	152
32	2	0	0	0	0	1	35
27	2	0	0	0	0	0	29
35	4	0	0	0	0	0	39
35	3	1	0	0	0	0	39
129	11	1	0	0	0	1	142
45	2	0	0	0	0	0	47
33	4	0	0	0	0	0	37
37	8	1	0	0	0	0	46
42	4	0	0	0	0	0	46
157	18	1	0	0	0	0	176
38	6	0	0	1	0	0	45
57	7	1	0	0	1	0	66
48	3	0	0	0	0	0	51
44	6	0	0	0	0	0	50
187	22	1	0	1	1	0	212
39	3	0	0	0	0	1	43
43	4	0	0	2	0	0	49
44	5	0	0	0	0	0	49
70	1	0	0	1	0	0	72
196	13	0	0	3	0	1	213
51	4	0	0	0	0	2	57
51	7	0	0	0	0	1	59
42	4	0	0	0	0	0	46
53	4	0	0	0	0	1	58
197	19	0	0	0	0	4	220
44	3	1	0	0	0	0	48
57	6	1	0	0	0	0	64
51	6	1	0	0	0	2	60
53	4	1	0	0	1	0	59
205	19	4	0	0	1	2	231
56	7	0	0	0	0	1	64
56	4	1	0	0	0	0	61
55	2	1	0	0	2	0	60
54	2	0	0	0	2	2	60
221	15	2	0	0	4	3	245

19	1	0	0	0	0	1	21
133	4	1	0	0	0	2	140
21	3	1	0	0	0	0	25
8	0	0	0	0	0	0	8
7	0	0	0	0	0	0	7
0	1	1	0	0	0	0	2
36	4	2	0	0	0	0	42
6	3	0	0	0	0	0	9
5	0	2	0	0	0	0	7
4	0	0	0	0	0	0	4
7	0	0	0	0	0	0	7
22	3	2	0	0	0	0	27
3	1	0	0	0	0	0	4
5	1	0	0	0	0	0	6
3	1	0	0	0	0	0	4
7	0	0	0	0	0	0	7
18	3	0	0	0	0	0	21
6	1	0	0	0	0	0	7
3	1	0	0	0	0	0	4
4	0	0	0	0	0	0	4
4	0	0	0	0	0	0	4
17	2	0	0	0	0	0	19
7	1	0	0	0	0	0	8
8	2	0	0	0	0	0	10
4	1	1	0	0	0	0	6
9	1	0	0	0	0	0	10
28	5	1	0	0	0	0	34
10	0	0	0	0	0	0	10
12	1	0	0	0	0	0	13
5	0	0	0	0	0	0	5
16	0	0	0	0	0	0	16
43	1	0	0	0	0	0	44
9	0	0	0	0	0	0	9
8	0	0	0	0	1	0	9
4	1	0	0	0	0	0	5
8	1	0	0	0	0	0	9
29	2	0	0	0	1	0	32
9	1	0	0	0	0	0	10
7	1	0	0	0	0	0	8
8	1	0	0	0	0	1	10
11	3	0	0	0	0	0	14
35	6	0	0	0	0	1	42
12	0	0	0	0	0	0	12
10	1	0	0	0	0	1	12
10	0	0	0	0	0	0	10
6	2	0	0	0	0	1	9
38	3	0	0	0	0	2	43

76
364
76
73
39
42
230
53
48
36
42
179
39
35
43
46
163
54
41
50
50
195
53
76
57
60
246
53
62
54
88
257
66
68
51
67
252
58
72
70
73
273
76
73
70
69
288

$18: 00$	0	0	0	0	0	0	0	0
$18: 15$	0	0	0	0	0	0	0	0
$18: 30$	0	0	0	0	0	0	0	0
$18: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$19: 00$	0	0	0	0	0	0	0	0
$19: 15$	0	0	0	0	0	0	0	0
$19: 30$	0	0	0	0	0	0	0	0
$19: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$20: 00$	0	0	0	0	0	0	0	0
$20: 15$	0	0	0	0	0	0	0	0
$20: 30$	0	0	0	0	0	0	0	0
$20: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$21: 00$	0	0	0	0	0	0	0	0
$21: 15$	0	0	0	0	0	0	0	0
$21: 30$	0	0	0	0	0	0	0	0
$21: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$22: 00$	0	0	0	0	0	0	0	0
$22: 15$	0	0	0	0	0	0	0	0
$22: 30$	0	0	0	0	0	0	0	0
$22: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$23: 00$	0	0	0	0	0	0	0	0
$23: 15$	0	0	0	0	0	0	0	0
$23: 30$	0	0	0	0	0	0	0	0
$23: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
0 Total 1 0 0 0 0						0	1	

Origin	Arm B Belmayne(E)Destination : Arm A Balgriffin Park							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	5	0	0	0	0	0	1	6
00:15	5	0	0	0	0	0	1	6
00:30	3	0	0	0	0	0	0	3
00:45	1	0	0	0	0	0	0	1
1 Hr	14	0	0	0	0	0	2	16
01:00	1	0	0	0	0	0	0	1
01:15	2	0	0	0	0	0	0	2
01:30	1	0	0	0	0	0	0	1
01:45	0	0	0	0	0	0	0	0
1 Hr	4	0	0	0	0	0	0	4

Destination:	Arm B	Belmayne(E)		Total		
Car	LGV	OGV1	OGV2		MC	PC

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

577	44	7	1	0	1	9	639

| Destination: Arm C Belmayne(W) | Total |
| :--- | :--- | :--- |
| | |

1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	1	0	0	0	0	0	3
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3

3697

$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$03: 00$	1	0	0	0	0	0	0	1
$03: 15$	1	0	0	0	0	0	0	1
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	1	0	0	0	0	0	0	1
1 Hr	3	0	0	0	0	0	0	3
$04: 00$	2	0	0	0	0	0	0	2
$04: 15$	1	0	0	0	0	0	0	1
$04: 30$	2	0	0	0	0	0	0	2
$04: 45$	2	0	0	0	0	0	0	2
1 Hr	7	0	0	0	0	0	0	7
$05: 00$	0	1	0	0	0	0	0	1
$05: 15$	3	2	0	0	0	0	0	5
$05: 30$	6	1	0	0	0	0	0	7
$05: 45$	5	0	0	0	0	0	0	5
1 Hr	14	4	0	0	0	0	0	18
$06: 00$	7	1	0	0	0	0	0	8
$06: 15$	4	2	1	0	0	0	0	7
$06: 30$	8	1	1	0	0	0	0	10
$06: 45$	13	1	0	0	0	0	0	14
1 Hr	32	5	2	0	0	0	0	39
$07: 00$	20	2	0	0	1	1	0	24
$07: 15$	20	5	0	0	1	1	0	27
$07: 30$	44	4	2	0	0	0	0	50
$07: 45$	44	4	1	1	0	0	1	51
1 Hr	128	15	3	1	2	2	1	152
$08: 00$	48	4	0	1	0	1	1	55
$08: 15$	48	5	0	0	0	1	0	54
$08: 30$	39	8	0	0	0	0	1	48
$08: 45$	42	4	2	0	1	0	1	50
1 Hr	177	21	2	1	1	2	3	207
$09: 00$	35	2	1	2	0	0	0	40
$09: 15$	45	5	1	0	0	0	0	51
$09: 30$	37	4	1	0	0	0	0	42
$09: 45$	28	6	0	0	0	0	0	34
1 Hr	145	17	3	2	0	0	0	167
$10: 00$	38	4	2	0	0	0	0	44
$10: 15$	33	7	2	0	0	0	1	43
$10: 30$	34	2	1	0	0	0	1	38
$10: 45$	39	5	4	1	0	1	0	50
1 Hr	144	18	9	1	0	1	2	175
$11: 00$	25	4	1	0	0	0	0	30
$11: 15$	44	6	1	1	0	1	0	53
10								

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	1	0	0	0	0	1
3	0	1	0	0	0	0	4
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
6	0	0	0	0	0	0	6
3	0	0	0	0	0	0	3
6	2	0	0	0	0	0	8
5	2	0	0	0	0	0	7
7	0	0	0	0	0	0	7
21	4	0	0	0	0	0	25
14	0	0	0	0	0	0	14
14	1	0	1	0	0	0	16
33	3	1	1	0	0	0	38
34	1	0	0	0	0	1	36
95	5	1	2	0	0	1	104
40	5	0	1	0	0	1	47
65	4	0	1	0	1	0	71
58	2	0	0	0	0	0	60
45	0	2	1	0	0	0	48
208	11	2	3	0	1	1	226
15	1	0	1	0	0	0	17
5	2	1	0	0	0	0	8
9	0	1	2	0	0	0	12
8	2	0	0	0	0	0	10
37	5	2	3	0	0	0	47
8	0	1	0	0	0	0	9
7	2	0	1	0	0	0	10
10	2	1	0	0	0	0	13
5	6	0	1	0	0	0	12
30	10	2	2	0	0	0	44
5	0	0	0	0	1	0	6
4	2	0	0	0	0	0	6

(Return To Dashboard

11:30	36	4	1	0	0	0	1	42
11:45	39	5	0	0	0	1	1	46
1 Hr	144	19	3	1	0	2	2	171
12:00	27	3	3	0	0	1	0	34
12:15	38	4	0	0	0	0	0	42
12:30	43	4	0	0	0	0	0	47
12:45	53	5	3	0	0	0	0	61
1 Hr	161	16	6	0	0	1	0	184
13:00	48	5	0	0	0	0	0	53
13:15	40	2	1	0	0	0	0	43
13:30	40	9	1	0	0	0	0	50
13:45	52	2	0	0	0	0	2	56
1 Hr	180	18	2	0	0	0	2	202
14:00	47	5	1	0	0	0	0	53
14:15	56	4	2	0	1	0	1	64
14:30	33	6	0	1	1	0	1	42
14:45	40	6	2	0	0	1	2	51
1 Hr	176	21	5	1	2	1	4	210
15:00	37	5	0	0	1	0	0	43
15:15	40	0	0	0	1	0	0	41
15:30	47	6	1	0	1	0	0	55
15:45	49	5	1	0	0	1	0	56
1 Hr	173	16	2	0	3	1	0	195
16:00	51	2	1	0	1	1	0	56
16:15	67	5	1	0	0	0	0	73
16:30	57	6	1	0	0	0	0	64
16:45	49	8	1	0	0	1	3	62
1 Hr	224	21	4	0	1	2	3	255
17:00	81	7	1	0	0	0	2	91
17:15	60	4	0	0	0	0	0	64
17:30	57	7	1	0	0	2	0	67
17:45	77	6	0	1	0	1	0	85
1 Hr	275	24	2	1	0	3	2	307
18:00	65	8	0	0	0	0	0	73
18:15	84	7	0	0	0	0	1	92
18:30	51	4	0	0	0	0	0	55
18:45	51	7	1	0	0	0	0	59
1 Hr	251	26	1	0	0	0	1	279
19:00	63	1	0	0	0	0	0	64
19:15	43	2	0	0	0	0	0	45
19:30	29	5	0	0	0	0	0	34
19:45	59	2	0	0	0	0	0	61
1 Hr	194	10	0	0	0	0	0	204
20:00	35	3	0	0	0	0	0	38
20:15	38	1	1	0	0	0	0	40
20:30	30	1	0	0	0	0	0	31
20:45	23	0	0	0	0	0	0	23

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0							

7	6	0	1	0	0	0	14
14	1	0	0	0	0	0	15
30	9	0	1	0	1	0	41
10	1	2	0	0	0	0	13
7	0	1	1	0	0	0	9
8	3	1	0	0	0	0	12
14	1	1	1	0	0	1	18
39	5	5	2	0	0	1	52
13	1	0	1	0	0	1	16
22	2	0	1	0	0	1	26
14	3	0	0	0	0	0	17
13	2	0	0	0	0	0	15
62	8	0	2	0	0	2	74
24	0	0	1	0	0	0	25
35	2	0	0	0	0	1	38
12	2	1	1	0	0	0	16
8	1	0	0	0	0	0	9
79	5	1	2	0	0	1	88
10	1	0	0	0	0	0	11
21	2	0	0	0	0	0	23
7	3	1	0	0	0	0	11
17	4	1	0	0	0	1	23
55	10	2	0	0	0	1	68
32	9	1	0	0	0	0	42
25	2	1	0	0	0	0	28
20	2	0	0	0	0	0	22
26	2	0	0	0	0	0	28
103	15	2	0	0	0	0	120
19	4	0	0	0	0	0	23
21	3	0	1	0	0	1	26
23	1	0	0	0	0	0	24
36	3	0	0	0	1	0	40
99	11	0	1	0	1	1	113
18	0	0	0	0	0	0	18
35	2	0	0	0	0	1	38
27	0	0	0	0	0	0	27
14	2	0	0	0	0	2	18
94	4	0	0	0	0	3	101
26	0	0	0	0	0	0	26
15	2	0	0	0	0	0	17
19	1	0	0	0	0	1	21
18	1	0	0	0	0	0	19
78	4	0	0	0	0	1	83
13	0	0	0	0	0	2	15
12	1	0	0	0	0	0	13
14	1	0	0	0	0	0	15
9	2	0	0	0	0	0	11

(Return To Dashboard

1 Hr	126	5	1	0	0	0	0	132
$21: 00$	27	1	1	0	0	0	0	29
$21: 15$	20	0	0	0	0	0	0	20
$21: 30$	28	0	0	0	0	0	0	28
$21: 45$	17	3	0	0	0	0	0	20
1 Hr	92	4	1	0	0	0	0	97
$22: 00$	15	0	0	0	0	0	0	15
$22: 15$	17	1	0	0	0	0	0	18
$22: 30$	11	0	0	0	0	0	0	11
$22: 45$	4	0	0	0	0	0	0	4
1 Hr	47	1	0	0	0	0	0	48
$23: 00$	8	1	0	0	0	0	0	9
$23: 15$	6	0	0	0	0	0	0	6
$23: 30$	8	0	0	0	0	0	0	8
$23: 45$	6	0	0	0	0	0	0	6
1 Hr	28	1	0	0	0	0	0	29

Total	2741	262	46	8	9	15	22	3103

Origin Arm C Belmayne(W)

Destination :	Arm A	Balgriffin Park	Total			
Car	LGV	OGV1		PSV	MC	PC

$00: 00$	0	1	0	0	0	0	0	1
$00: 15$	0	0	0	0	0	0	0	0
$00: 30$	0	0	0	0	0	0	0	0
$00: 45$	0	0	0	0	0	0	0	0
1 Hr	0	1	0	0	0	0	0	1
$01: 00$	0	0	0	0	0	0	0	0
$01: 15$	0	0	0	0	0	0	0	0
$01: 30$	0	0	0	0	0	0	0	0
$01: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$02: 00$	0	0	0	0	0	0	0	0
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
$03: 00$	0	0	0	0	0	0	0	0
$03: 15$	0	0	0	0	0	0	0	0
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	0	0	0	0	0	0	0	0
03: Hr	0	0	0	0	0	0	0	0
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	2	0	0	0	0	0	0	2
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
10	0	1	0	0	0	0	11

\[

\]

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

1142	111	17	18	0	3	15	1306

Destination :	Arm C	Belmayne(W)		Total			
Car							LGV

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

4420

1 Hr	2	0	0	0	0	0	0	2
$05: 00$	0	0	0	0	0	0	0	0
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$06: 00$	2	0	0	0	0	0	0	2
$06: 15$	1	0	0	0	0	0	0	1
$06: 30$	1	0	0	0	0	0	0	1
$06: 45$	0	0	0	0	0	0	0	0
1 Hr	4	0	0	0	0	0	0	4
$07: 00$	2	0	0	0	0	0	0	2
$07: 15$	3	0	0	0	0	0	0	3
$07: 30$	3	0	0	0	0	0	0	3
$07: 45$	7	0	0	0	0	0	0	7
1 Hr	15	0	0	0	0	0	0	15
$08: 00$	9	3	0	0	0	0	0	12
$08: 15$	11	1	0	0	1	0	0	13
$08: 30$	18	2	0	0	0	0	0	20
$08: 45$	7	2	0	0	0	0	0	9
1 Hr	45	8	0	0	1	0	0	54
$09: 00$	9	0	0	0	0	0	0	9
$09: 15$	4	1	0	0	0	0	0	5
$09: 30$	2	0	0	0	0	0	0	2
$09: 45$	4	0	0	0	0	0	0	4
1 Hr	19	1	0	0	0	0	0	20
$10: 00$	2	0	0	0	0	1	0	3
$10: 15$	6	1	0	0	0	0	0	7
$10: 30$	6	0	0	0	0	0	0	6
$10: 45$	1	0	0	0	0	0	0	1
1 Hr	15	1	0	0	0	1	0	17
$11: 00$	1	0	0	0	0	0	0	1
$11: 15$	5	0	0	0	0	0	0	5
$11: 30$	5	2	0	0	0	0	0	7
$11: 45$	4	2	1	0	0	0	0	7
1 Hr	15	4	1	0	0	0	0	20
$12: 00$	11	4	0	0	0	0	0	15
$12: 15$	8	0	0	0	0	0	0	8
$12: 30$	3	1	0	0	0	0	0	4
$12: 45$	3	0	0	0	0	0	0	3
1 Hr	25	5	0	0	0	0	0	30
$13: 00$	3	0	0	0	0	0	0	3
$13: 15$	11	2	0	0	0	0	0	13
$13: 30$	7	2	0	0	0	0	0	9
$13: 45$	3	0	0	0	0	0	0	3
1 Hr	24	4	0	0	0	0	0	28
$14: 00$	6	0	0	0	0	0	0	6
10								

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
4	2	0	0	0	0	0	6
6	2	0	0	0	0	0	8
13	8	1	1	0	0	0	23
25	12	1	1	0	0	0	39
8	2	0	0	0	0	0	10
18	7	0	0	0	0	0	25
25	4	2	2	0	0	0	33
22	2	0	0	1	0	0	25
73	15	2	2	1	0	0	93
27	2	0	1	0	0	0	30
20	2	0	0	0	0	0	22
24	4	0	1	0	0	1	30
28	1	1	1	0	0	1	32
99	9	1	3	0	0	2	114
22	2	1	0	1	0	0	26
13	2	0	1	0	0	0	16
3	2	2	0	0	0	0	7
8	2	0	1	0	0	1	12
46	8	3	2	1	0	1	61
7	1	0	0	0	0	0	8
9	2	0	1	0	0	0	12
9	3	0	1	0	1	0	14
5	3	1	0	0	0	0	9
30	9	1	2	0	1	0	43
6	0	0	1	0	0	0	7
8	1	0	0	0	0	0	9
15	1	0	0	0	0	0	16
12	1	1	0	0	0	0	14
41	3	1	1	0	0	0	46
13	3	1	1	0	0	0	18
12	1	1	1	0	0	0	15
14	1	0	0	0	0	0	15
18	1	0	1	0	0	0	20
57	6	2	3	0	0	0	68
14	2	0	2	0	0	0	18
22	2	0	0	0	0	0	24
29	3	0	1	0	0	0	33
16	1	1	0	0	0	0	18
81	8	1	3	0	0	0	93
10	1	0	0	0	0	1	12

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4
4	0	0	0	0	0	0	4
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1

14:15	10	1	0	0	0	0	0	11
14:30	12	1	0	0	0	0	0	13
14:45	10	0	0	0	0	0	0	10
1 Hr	38	2	0	0	0	0	0	40
15:00	6	0	0	0	0	0	0	6
15:15	9	1	1	0	0	0	0	11
15:30	5	1	0	0	0	1	0	7
15:45	4	0	0	0	0	0	0	4
1 Hr	24	2	1	0	0	1	0	28
16:00	6	1	0	0	0	0	0	7
16:15	4	0	0	0	0	0	0	4
16:30	8	2	0	0	0	0	0	10
16:45	11	1	0	0	0	0	0	12
1 Hr	29	4	0	0	0	0	0	33
17:00	11	1	1	0	0	0	0	13
17:15	9	0	0	0	0	0	0	9
17:30	12	1	0	0	0	0	0	13
17:45	7	0	0	0	0	0	0	7
1 Hr	39	2	1	0	0	0	0	42
18:00	11	0	0	0	0	0	0	11
18:15	9	1	0	0	0	0	0	10
18:30	9	0	0	0	0	0	0	9
18:45	6	1	0	0	0	0	1	8
1 Hr	35	2	0	0	0	0	1	38
19:00	2	0	0	0	0	0	0	2
19:15	9	1	0	0	0	0	0	10
19:30	5	0	0	0	0	0	0	5
19:45	5	0	0	0	0	0	0	5
1 Hr	21	1	0	0	0	0	0	22
20:00	6	0	0	0	0	0	0	6
20:15	3	1	0	0	0	0	0	4
20:30	4	0	0	0	0	0	0	4
20:45	5	0	0	0	0	0	0	5
1 Hr	18	1	0	0	0	0	0	19
21:00	6	0	0	0	0	0	0	6
21:15	4	0	0	0	0	0	0	4
21:30	1	0	0	0	0	0	0	1
21:45	2	0	0	0	0	0	0	2
1 Hr	13	0	0	0	0	0	0	13
22:00	5	0	0	0	0	0	0	5
22:15	1	0	0	0	0	0	0	1
22:30	2	0	0	0	0	0	0	2
22:45	1	0	0	0	0	0	0	1
1 Hr	9	0	0	0	0	0	0	9
23:00	0	0	0	0	0	0	0	0
23:15	0	0	0	0	0	0	0	0
23:30	1	0	0	0	0	0	0	1

21	2	0	0	0	0	0	23
43	2	0	0	0	0	1	
22	1	0	0	0	0	0	26
96	6	0	0	0	0	2	104
10	3	1	0	0	0	0	14
22	3	0	0	0	0	0	25
21	5	0	0	0	0	0	26
10	3	1	0	0	0	0	14
63	14	2	0	0	0	0	79
17	3	0	0	1	0	0	21
32	3	0	0	0	0	2	37
28	5	0	0	0	1	0	34
28	5	0	0	0	0	0	33
105	16	0	0	1	1	2	125
20	3	0	0	0	0	0	23
32	2	0	0	0	1	0	35
28	1	0	0	0	0	1	30
34	3	0	0	0	1	0	38
114	9	0	0	0	2	1	126
34	1	0	0	0	0	0	35
34	2	0	0	0	0	2	38
33	1	0	0	0	0	1	35
21	1	0	0	0	0	0	22
122	5	0	0	0	0	3	130
17	1	0	0	0	0	0	18
18	0	0	0	0	0	0	18
14	2	0	0	0	0	2	18
17	0	0	0	0	0	0	17
66	3	0	0	0	0	2	71
12	1	0	0	0	0	0	13
12	1	0	0	0	0	0	13
12	2	0	0	0	0	0	14
6	2	0	0	0	0	0	8
42	6	0	0	0	0	0	48
3	0	0	0	0	0	0	3
12	0	0	0	0	0	2	14
3	1	0	0	0	0	0	4
5	0	0	0	0	0	0	5
23	1	0	0	0	0	2	26
5	0	0	0	0	0	0	5
10	2	0	0	0	0	0	12
8	0	0	0	0	0	0	8
4	1	0	0	0	0	0	5
27	3	0	0	0	0	0	30
5	0	0	0	0	0	0	5
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

r - v|

Total	393	38	3	0	1	2	1	438

ORIGIN SUMMARY								
	Origin :		Arm A	Balgriffin				Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	4	0	0	0	0	0	0	4
00:15	4	1	0	0	0	0	0	5
00:30	4	0	0	0	0	0	0	4
00:45	3	0	0	0	0	0	0	3
1 Hr	15	1	0	0	0	0	0	16
01:00	3	0	0	0	0	0	0	3
01:15	3	2	0	0	0	0	0	5
01:30	4	0	0	0	0	0	0	4
01:45	1	0	0	0	0	0	0	1
1 Hr	11	2	0	0	0	0	0	13
02:00	1	0	0	0	0	0	0	1
02:15	1	0	0	0	0	0	0	1
02:30	1	0	0	0	0	0	0	1
02:45	0	0	0	0	0	0	0	0
1 Hr	3	0	0	0	0	0	0	3
03:00	2	0	0	0	0	0	0	2
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
04:00	1	0	0	0	0	0	0	1
04:15	0	0	0	0	0	0	0	0
04:30	1	0	0	0	0	0	0	1
04:45	0	2	0	0	0	0	0	2
1 Hr	2	2	0	0	0	0	0	4
05:00	0	0	0	0	0	0	0	0
05:15	2	1	0	0	0	0	0	3
05:30	0	0	0	0	0	0	0	0
05:45	2	1	0	0	0	0	1	4
1 Hr	4	2	0	0	0	0	1	7
06:00	4	1	0	0	0	0	0	5
06:15	11	0	0	0	0	0	0	11
06:30	6	0	0	0	0	0	0	6
06:45	16	1	0	0	0	0	0	17
1 Hr	37	2	0	0	0	0	0	39
07:00	18	4	0	0	0	0	0	22
07:15	42	8	0	0	1	0	1	52
07:30	60	4	0	0	0	0	0	64

1130	133	14	17	3	4	15	1316

Origin:	Arm B	Belmayne(E)		Total		
Car	LGV	OGV1	OGV2		MC	PC

6	1	0	0	0	0	1	8
5	0	0	0	0	0	1	6
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
16	1	0	0	0	0	2	19
3	0	0	0	0	0	0	3
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	7
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
9	0	0	0	0	0	0	9
1	1	0	0	0	0	0	2
3	2	0	0	0	0	0	5
8	1	0	0	0	0	0	9
8	0	0	0	0	0	0	8
20	4	0	0	0	0	0	24
10	1	0	0	0	0	0	11
10	4	1	0	0	0	0	15
13	3	1	0	0	0	0	17
20	1	0	0	0	0	0	21
53	9	2	0	0	0	0	64
34	2	0	0	1	1	0	38
34	6	0	1	1	1	0	43
77	7	3	1	0	0	0	88

1763

Origin
Totals

Car LGV OGV1 OGV2 PSV MC PC

1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	1	0	0	0	0	0	3
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
5	2	0	0	0	0	0	7
7	2	0	0	0	0	0	9
13	8	1	1	0	0	0	23
29	12	1	1	0	0	0	43
10	2	0	0	0	0	0	12
21	7	0	0	0	0	0	28
28	4	2	2	0	0	0	36

$07: 45$	86	8	0	2	3	0	1	100
1 Hr	206	24	0	2	4	0	2	238
$08: 00$	95	7	2	0	0	0	1	105
$08: 15$	108	2	0	0	0	0	1	111
$08: 30$	66	3	2	1	0	0	0	72
$08: 45$	69	5	0	1	0	0	1	76
1 Hr	338	17	4	2	0	0	3	364
$09: 00$	63	11	1	1	0	0	0	76
$09: 15$	68	5	0	0	0	0	0	73
$09: 30$	31	7	0	1	0	0	0	39
$09: 45$	35	5	1	1	0	0	0	42
1 Hr	197	28	2	3	0	0	0	230
$10: 00$	43	7	3	0	0	0	0	53
$10: 15$	39	6	3	0	0	0	0	48
$10: 30$	34	2	0	0	0	0	0	36
$10: 45$	36	3	1	1	0	1	0	42
1 Hr	152	18	7	1	0	1	0	179
$11: 00$	35	3	0	0	0	0	1	39
$11: 15$	32	3	0	0	0	0	0	35
$11: 30$	38	5	0	0	0	0	0	43
$11: 45$	42	3	1	0	0	0	0	46
1 Hr	147	14	1	0	0	0	1	163
$12: 00$	51	3	0	0	0	0	0	54
$12: 15$	36	5	0	0	0	0	0	41
$12: 30$	41	8	1	0	0	0	0	50
$12: 45$	46	4	0	0	0	0	0	50
1 Hr	174	20	1	0	0	0	0	195
$13: 00$	45	7	0	0	1	0	0	53
$13: 15$	65	9	1	0	0	1	0	76
$13: 30$	52	4	1	0	0	0	0	57
$13: 45$	53	7	0	0	0	0	0	60
1 Hr	215	27	2	0	1	1	0	246
$14: 00$	49	3	0	0	0	0	1	53
$14: 15$	55	5	0	0	2	0	0	62
$14: 30$	49	5	0	0	0	0	0	54
$14: 45$	86	1	0	0	1	0	0	88
$1 H r$	239	14	0	0	3	0	1	257
$15: 00$	60	4	0	0	0	0	2	66
$15: 15$	59	7	0	0	0	1	1	68
$15: 30$	46	5	0	0	0	0	0	51
$15: 45$	61	5	0	0	0	0	1	67
1 Hr	226	21	0	0	0	1	4	252
$16: 00$	53	4	1	0	0	0	0	58
$16: 15$	64	7	1	0	0	0	0	72
$16: 30$	59	7	1	0	0	0	3	70
$16: 45$	64	7	1	0	0	1	0	73
1 Hr	240	25	4	0	0	1	3	273

78	5	1	1	0	0	2	87
223	20	4	3	2	2	2	256
88	9	0	2	0	1	2	102
113	9	0	1	0	2	0	125
97	10	0	0	0	0	1	108
88	4	4	1	1	0	1	99
386	32	4	4	1	3	4	434
52	3	1	3	0	0	0	59
51	7	2	0	0	0	0	60
46	4	2	2	0	0	0	54
36	8	1	0	0	0	0	45
185	22	6	5	0	0	0	218
46	4	3	0	0	0	0	53
40	9	2	1	0	0	1	53
44	4	2	0	0	0	1	51
44	11	4	2	0	1	0	62
174	28	11	3	0	1	2	219
30	4	1	0	0	1	0	36
48	8	1	1	0	1	0	59
44	10	1	1	0	0	1	57
53	6	0	0	0	1	1	61
175	28	3	2	0	3	2	213
37	4	5	0	0	1	0	47
45	4	1	1	0	0	0	51
51	7	1	0	0	0	0	59
67	6	4	1	0	0	1	79
200	21	11	2	0	1	1	236
61	6	0	1	0	0	1	69
62	4	1	1	0	0	1	69
54	12	1	0	0	0	0	67
65	4	0	0	0	0	2	71
242	26	2	2	0	0	4	276
71	5	1	1	0	0	0	78
91	6	2	0	1	0	2	102
48	8	1	2	1	0	1	61
48	7	2	0	0	1	2	60
258	26	6	3	2	1	5	301
47	6	0	0	1	0	0	54
61	2	0	0	1	0	0	64
54	9	2	0	1	0	0	66
66	9	2	0	0	1	1	79
228	26	4	0	3	1	1	263
83	11	2	0	1	1	0	98
92	7	2	0	0	0	0	101
77	8	1	0	0	0	0	86
75	10	1	0	0	1	3	90
327	36	6	0	1	2	3	375

29	2	0	0	1	0	0	32
88	15	2	2	1	0	0	108
36	5	0	1	0	0	0	42
31	3	0	0	1	0	0	35
42	6	0	1	0	0	1	50
39	3	1	1	0	0	1	45
148	17	1	3	1	0	2	172
31	2	1	0	1	0	0	35
17	3	0	1	0	0	0	21
5	2	2	0	0	0	0	9
12	2	0	1	0	0	1	16
65	9	3	2	1	0	1	81
9	1	0	0	0	1	0	11
15	3	0	1	0	0	0	19
15	3	0	1	0	1	0	20
6	3	1	0	0	0	0	10
45	10	1	2	0	2	0	60
7	1	0	1	0	0	0	9
13	1	0	0	0	0	0	14
20	3	0	0	0	0	0	23
16	3	2	0	0	0	0	21
56	8	2	1	0	0	0	67
24	7	1	1	0	0	0	33
20	1	1	1	0	0	0	23
17	2	0	0	0	0	0	19
21	1	0	1	0	0	0	23
82	11	2	3	0	0	0	98
17	2	0	2	0	0	0	21
33	4	0	0	0	0	0	37
36	5	0	1	0	0	0	42
20	1	1	0	0	0	0	22
106	12	1	3	0	0	0	122
17	1	0	0	0	0	1	19
31	3	0	0	0	0	0	34
56	3	0	0	0	0	1	60
32	1	0	0	0	0	0	33
136	8	0	0	0	0	2	146
16	3	1	0	0	0	0	20
31	4	1	0	0	0	0	36
26	6	0	0	0	1	0	33
14	3	1	0	0	0	0	18
87	16	3	0	0	1	0	107
23	4	0	0	1	0	0	28
36	3	0	0	0	0	2	41
36	7	0	0	0	1	0	44
39	6	0	0	0	0	0	45
134	20	0	0	1	1	2	158
10							

219
602
249
271
230
220
970
170
154
102
103
529
117
120
107
114
458
84
108
123
128
443
134
115
128
152
529
143
182
166
153
644
150
198
175
181
704
140
168
150
164
622
184
214
200
208
806

$17: 00$	68	7	0	0	0	0	1	76
$17: 15$	66	5	1	0	0	0	1	73
$17: 30$	65	2	1	0	0	2	0	70
$17: 45$	60	4	0	0	0	2	3	69
1 Hr	259	18	2	0	0	4	5	288
$18: 00$	76	5	0	0	0	0	1	82
$18: 15$	71	2	0	0	0	1	0	74
$18: 30$	49	3	1	0	0	1	0	54
$18: 45$	72	8	0	0	1	0	0	81
1 Hr	268	18	1	0	1	2	1	291
$19: 00$	39	3	0	0	0	0	0	42
$19: 15$	63	2	0	1	0	0	0	66
$19: 30$	45	2	0	0	0	0	0	47
$19: 45$	40	4	0	0	0	0	3	47
1 Hr	187	11	0	1	0	0	3	202
$20: 00$	45	2	1	0	0	0	0	48
$20: 15$	33	4	0	0	0	0	0	37
$20: 30$	32	2	0	0	0	0	1	35
$20: 45$	40	4	0	0	0	0	2	46
1 Hr	150	12	1	0	0	0	3	166
$21: 00$	53	1	0	0	0	0	0	54
$21: 15$	38	1	0	0	0	0	0	39
$21: 30$	28	2	0	0	0	0	0	30
$21: 45$	26	1	0	0	0	1	0	28
1 Hr	145	5	0	0	0	1	0	151
$22: 00$	20	1	0	0	0	0	1	22
$22: 15$	32	0	0	0	0	0	1	33
$22: 30$	13	0	0	0	0	0	0	13
$22: 45$	17	0	0	0	0	0	0	17
1 Hr	82	1	0	0	0	0	2	85
$23: 00$	9	0	0	0	0	0	0	9
$23: 15$	14	1	0	0	0	0	0	15
$23: 30$	5	0	0	0	0	0	0	5
$23: 45$	4	0	0	0	0	0	0	4
1 Hr	32	1	0	0	0	0	0	33
Total	3331	283	25	9	9	11	29	3697

DESTINATION SUMMARY

Destination:						
Carm A	Balgriffin Park		Total			

$00: 00$	5	1	0	0	0	0	1	7
$00: 15$	5	0	0	0	0	0	1	6
$00: 30$	3	0	0	0	0	0	0	3
$00: 45$	1	0	0	0	0	0	0	1
1 Hr	14	1	0	0	0	0	2	17

Destination:	Arm C	Belmayne(W)		Total		
Car						

1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
4	1	0	0	0	0	0	5

Dest
Totals

$01: 00$	1	0	0	0	0	0	0	1
$01: 15$	2	0	0	0	0	0	0	2
$01: 30$	1	0	0	0	0	0	0	1
$01: 45$	0	0	0	0	0	0	0	0
01 Hr	4	0	0	0	0	0	0	4
$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	2	0	0	0	0	0	0	2
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	3	0	0	0	0	0	0	3
$03: 00$	1	0	0	0	0	0	0	1
$03: 15$	1	0	0	0	0	0	0	1
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	1	0	0	0	0	0	0	1
1 Hr	3	0	0	0	0	0	0	3
$04: 00$	2	0	0	0	0	0	0	2
$04: 15$	3	0	0	0	0	0	0	3
$04: 30$	2	0	0	0	0	0	0	2
$04: 45$	2	0	0	0	0	0	0	2
1 Hr	9	0	0	0	0	0	0	9
$05: 00$	0	1	0	0	0	0	0	1
$05: 15$	3	2	0	0	0	0	0	5
$05: 30$	6	1	0	0	0	0	0	7
$05: 45$	5	0	0	0	0	0	0	5
1 Hr	14	4	0	0	0	0	0	18
$06: 00$	9	1	0	0	0	0	0	10
$06: 15$	5	2	1	0	0	0	0	8
$06: 30$	9	1	1	0	0	0	0	11
$06: 45$	13	1	0	0	0	0	0	14
1 Hr	36	5	2	0	0	0	0	43
$07: 00$	22	2	0	0	1	1	0	26
$07: 15$	23	5	0	0	1	1	0	30
$07: 30$	47	4	2	0	0	0	0	53
$07: 45$	51	4	1	1	0	0	1	58
1 Hr	143	15	3	1	2	2	1	167
$08: 00$	57	7	0	1	0	1	1	67
$08: 15$	59	6	0	0	1	1	0	67
$00: 30$	57	10	0	0	0	0	1	68
$08: 45$	49	6	2	0	1	0	1	59
1 Hr	222	29	2	1	2	2	3	261
$09: 00$	44	2	1	2	0	0	0	49
$09: 15$	49	6	1	0	0	0	0	56
$09: 30$	40	4	1	0	0	0	0	45
$09: 45$	32	6	0	0	0	0	0	38
1 Hr	165	18	3	2	0	0	0	188
$10: 00$	40	4	2	0	0	1	0	47
$10: 15$	39	8	2	0	0	0	1	50

3	0	0	0	0	0	0	3
4	2	0	0	0	0	0	6
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
12	2	0	0	0	0	0	14
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2
1	2	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	1	0	0	0	0	1	4
4	2	0	0	0	0	1	7
6	1	0	0	0	0	0	7
15	2	0	0	0	0	0	17
12	2	0	0	0	0	0	14
28	8	1	1	0	0	0	38
61	13	1	1	0	0	0	76
26	6	0	0	0	0	0	32
58	15	0	0	1	0	1	75
74	7	2	2	0	0	0	85
82	9	0	1	4	0	1	97
240	37	2	3	5	0	2	289
87	7	2	1	0	0	1	98
79	4	0	0	0	0	0	83
60	6	1	2	0	0	1	70
79	5	1	2	0	0	1	88
305	22	4	5	0	0	3	339
66	10	1	1	1	0	0	79
74	7	0	1	0	0	0	82
26	9	2	1	0	0	0	38
43	6	1	2	0	0	1	53
209	32	4	5	1	0	1	252
44	5	3	0	0	0	0	52
43	8	1	1	0	0	0	53

2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
7	0	0	0	0	0	0	7
3	0	0	0	0	0	0	3
6	2	0	0	0	0	0	8
5	2	0	0	0	0	0	7
8	1	0	0	0	0	0	9
22	5	0	0	0	0	0	27
14	0	0	0	0	0	0	14
16	1	0	1	0	0	0	18
44	4	1	1	0	0	0	50
60	2	0	1	0	0	1	64
134	7	1	3	0	0	1	146
75	7	0	1	0	0	1	84
114	4	0	1	0	1	1	121
88	3	1	0	0	0	0	92
68	1	2	1	0	0	1	73
345	15	3	3	0	1	3	370
36	4	1	1	0	0	0	42
13	2	1	0	0	0	0	16
16	0	1	2	0	0	0	19
8	3	1	0	0	0	0	12
73	9	4	3	0	0	0	89
14	3	1	0	0	0	0	18
12	2	2	1	0	0	0	17

(D) Convert to PCU

10:30	40	2	1	0	0	0		44
10:45	40	5	4	1	0	1	0	51
1 Hr	159	19	9	1	0	2	2	192
11:00	26	4	1	0	0	0	0	31
11:15	49	6	1	1	0	1	0	58
11:30	41	6	1	0	0	0	1	49
11:45	43	7	1	0	0	1	1	53
1 Hr	159	23	4	1	0	2	2	191
12:00	38	7	3	0	0	1	0	49
12:15	46	4	0	0	0	0	0	50
12:30	46	5	0	0	0	0	0	51
12:45	56	5	3	0	0	0	0	64
1 Hr	186	21	6	0	0	1	0	214
13:00	51	5	0	0	0	0	0	56
13:15	51	4	1	0	0	0	0	56
13:30	47	11	1	0	0	0	0	59
13:45	55	2	0	0	0	0	2	59
1 Hr	204	22	2	0	0	0	2	230
14:00	53	5	1	0	0	0	0	59
14:15	66	5	2	0	1	0	1	75
14:30	45	7	0	1	1	0	1	55
14:45	50	6	2	0	0	1	2	61
1 Hr	214	23	5	1	2	1	4	250
15:00	43	5	0	0	1	0	0	49
15:15	49	1	1	0	1	0	0	52
15:30	52	7	1	0	1	1	0	62
15:45	53	5	1	0	0	1	0	60
1 Hr	197	18	3	0	3	2	0	223
16:00	57	3	1	0	1	1	0	63
16:15	71	5	1	0	0	0	0	77
16:30	65	8	1	0	0	0	0	74
16:45	60	9	1	0	0	1	3	74
1 Hr	253	25	4	0	1	2	3	288
17:00	92	8	2	0	0	0	2	104
17:15	69	4	0	0	0	0	0	73
17:30	69	8	1	0	0	2	0	80
17:45	84	6	0	1	0	1	0	92
1 Hr	314	26	3	1	0	3	2	349
18:00	76	8	0	0	0	0	0	84
18:15	93	8	0	0	0	0	1	102
18:30	60	4	0	0	0	0	0	64
18:45	57	8	1	0	0	0	1	67
1 Hr	286	28	1	0	0	0	2	317
19:00	65	1	0	0	0	0	0	66
19:15	52	3	0	0	0	0	0	55
19:30	34	5	0	0	0	0	0	39
19:45	64	2	0	0	0	0	0	66

39	5	0	1	0	1	0	46
34	6	2	1	0	1	0	44
160	24	6	3	0	2	0	195
38	2	0	1	0	0	1	42
35	3	0	0	0	0	0	38
51	5	0	0	0	0	0	56
47	4	2	0	0	0	0	53
171	14	2	1	0	0	1	189
58	5	1	1	0	0	0	65
45	5	1	1	0	0	0	52
51	9	1	0	0	0	0	61
60	5	0	1	0	0	0	66
214	24	3	3	0	0	0	244
52	8	0	2	1	0	0	63
79	9	1	0	0	1	0	90
77	6	0	1	0	0	0	84
60	7	1	0	0	0	0	68
268	30	2	3	1	1	0	305
49	4	0	0	0	0	2	55
64	6	0	0	2	0	0	72
90	7	0	0	0	0	1	98
92	2	0	0	1	0	0	95
295	19	0	0	3	0	3	320
61	7	1	0	0	0	2	71
73	10	0	0	0	0	1	84
63	9	0	0	0	0	0	72
63	7	1	0	0	0	1	72
260	33	2	0	0	0	4	299
61	6	1	0	1	0	0	69
89	9	1	0	0	0	2	101
79	11	1	0	0	1	2	94
81	9	1	0	0	1	0	92
310	35	4	0	1	2	4	356
76	10	0	0	0	0	1	87
88	6	1	0	0	1	0	96
83	3	1	0	0	2	1	90
88	5	0	0	0	3	2	98
335	24	2	0	0	6	4	371
100	6	0	0	0	0	1	107
96	3	0	0	0	1	2	102
76	4	1	0	0	1	1	83
80	8	0	0	1	0	0	89
352	21	1	0	1	2	4	381
49	3	0	0	0	0	0	52
65	1	0	1	0	0	0	67
50	4	0	0	0	0	2	56
52	4	0	0	0	0	0	56

14	2	1	0	0	0	0	17
12	6	0	1	0	0	0	19
52	13	4	2	0	0	0	71
8	2	0	0	0	1	0	11
9	3	0	0	0	0	0	12
10	7	0	1	0	0	0	18
21	1	0	0	0	0	0	22
48	13	0	1	0	1	0	63
16	2	2	0	0	0	0	20
10	1	1	1	0	0	0	13
12	3	1	0	0	0	0	16
18	1	1	1	0	0	1	22
56	7	5	2	0	0	1	71
20	2	0	1	0	0	1	24
30	4	0	1	0	0	1	36
18	4	1	0	0	0	0	23
23	3	0	0	0	0	0	26
91	13	1	2	0	0	2	109
35	0	0	1	0	0	0	36
47	3	0	0	0	0	1	51
18	2	1	1	0	0	0	22
24	1	0	0	0	0	0	25
124	6	1	2	0	0	1	134
19	1	0	0	0	0	0	20
29	2	0	0	0	1	0	32
11	4	1	0	0	0	0	16
25	5	1	0	0	0	1	32
84	12	2	0	0	1	1	100
41	10	1	0	0	0	0	52
32	3	1	0	0	0	0	36
28	3	0	0	0	0	1	32
37	5	0	0	0	0	0	42
138	21	2	0	0	0	1	162
31	4	0	0	0	0	0	35
31	4	0	1	0	0	2	38
33	1	0	0	0	0	0	34
42	5	0	0	0	1	1	49
137	14	0	1	0	1	3	156
29	0	0	0	0	0	0	29
44	3	0	0	0	0	1	48
33	0	0	0	0	0	0	33
27	3	0	0	0	0	2	32
133	6	0	0	0	0	3	142
33	1	0	0	0	0	0	34
31	3	0	0	0	0	0	34
28	1	0	0	0	0	1	30
24	1	0	0	0	0	3	28
10							

1 Hr	215	11	0	0	0	0	0	226
$20: 00$	41	3	0	0	0	0	0	44
$20: 15$	41	2	1	0	0	0	0	44
$20: 30$	34	1	0	0	0	0	0	35
$20: 45$	28	0	0	0	0	0	0	28
1 Hr	144	6	1	0	0	0	0	151
$21: 00$	33	1	1	0	0	0	0	35
$21: 15$	24	0	0	0	0	0	0	24
$21: 30$	29	0	0	0	0	0	0	29
$21: 45$	19	3	0	0	0	0	0	22
1 Hr	105	4	1	0	0	0	0	110
$22: 00$	20	0	0	0	0	0	0	20
$22: 15$	18	1	0	0	0	0	0	19
$22: 30$	13	0	0	0	0	0	0	13
$22: 45$	5	0	0	0	0	0	0	5
1 Hr	56	1	0	0	0	0	0	57
$23: 00$	8	1	0	0	0	0	0	9
$23: 15$	6	0	0	0	0	0	0	6
$23: 30$	9	0	0	0	0	0	0	9
$23: 45$	7	0	0	0	0	0	0	7
1 Hr	30	1	0	0	0	0	0	31
Total	3135	300	49	8	10	17	23	3542

216	12	0	1	0	0	2	231	
52	2	0	0	0	0	0	54	
42	4	0	0	0	0	0	46	
40	4	0	0	0	0	1	45	
43	5	0	0	0	0	1	49	
177	15	0	0	0	0	2	194	
48	1	0	0	0	0	0	49	
43	1	0	0	0	0	2	46	
27	3	0	0	0	0	0	30	
25	1	0	0	0	1	0	27	
143	6	0	0	0	1	2	152	
21	1	0	0	0	0	1	23	
38	2	0	0	0	0	1	41	
20	0	0	0	0	0	0	20	
17	1	0	0	0	0	0	18	
96	4	0	0	0	0	2	102	
13	0	0	0	0	0	0	13	
14	0	0	0	0	0	0	14	
9	0	0	0	0	0	0	9	
6	0	0	0	0	0	0	6	
42	0	0	0	0	0	0	42	
3893	372	33	25	12	14	35	4384	

116	6	0	0	0	0	4	126
18	1	1	0	0	0	2	22
15	2	0	0	0	0	0	17
18	1	0	0	0	0	0	19
12	3	0	0	0	0	1	16
63	7	1	0	0	0	3	74
11	0	0	0	0	0	0	11
14	0	0	0	0	0	0	14
11	0	0	0	0	0	0	11
10	0	0	0	0	0	0	10
46	0	0	0	0	0	0	46
14	0	0	0	0	0	0	14
4	0	0	0	0	0	0	4
5	0	0	0	0	0	0	5
8	0	0	0	0	0	0	8
31	0	0	0	0	0	0	31
2	0	0	0	0	0	0	2
6	1	0	0	0	0	0	7
1	0	0	0	0	0	1	2
3	0	0	0	0	0	0	3
12	1	0	0	0	0	1	14
						24	1954
1727	156	24	19	0	4	24	

583 120 107 99 93 419 95 84 70 59 308 57 64 38 31 190 24 27 20 16 87 9880

SITE 3

Origin	Arm A Belmayne(E)Destination : Arm A Belmayne(E)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	0
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
05:00	0	0	0	0	0	0	0	0
05:15	0	0	0	0	0	0	0	0
05:30	0	0	0	0	0	0	0	0
05:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
06:00	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
07:00	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0
07:30	0	1	0	0	0	0	0	1
07:45	0	0	0	0	0	0	0	0
1 Hr	0	1	0	0	0	0	0	1
08:00	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0

Destination : Arm B Hole in The Wall Road							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	1
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
1	1	0	0	0	0	0	2
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6
0	1	0	0	0	0	0	1
3	0	0	0	0	0	0	3
3	2	0	0	0	0	0	5
2	1	0	0	0	0	0	3
8	4	0	0	0	0	0	12
3	0	0	0	0	0	0	3
0	1	0	0	0	0	0	1
4	0	0	0	0	1	0	5

$08: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$09: 00$	0	0	0	0	0	0	0	0
$09: 15$	0	0	0	0	0	0	0	0
$09: 30$	0	0	0	0	0	0	0	0
$09: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$10: 00$	0	0	0	0	0	0	0	0
$10: 15$	0	0	0	0	0	0	0	0
$10: 30$	0	0	0	0	0	0	0	0
$10: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$11: 00$	0	0	0	0	0	0	0	0
$11: 15$	0	0	0	0	0	0	0	0
$11: 30$	0	0	0	0	0	0	0	0
$11: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$12: 00$	0	0	0	0	0	0	0	0
$12: 15$	0	0	0	0	0	0	0	0
$12: 30$	0	0	0	0	0	0	0	0
$12: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$13: 00$	0	0	0	0	0	0	0	0
$13: 15$	0	0	0	0	0	0	0	0
$13: 30$	0	0	0	0	0	0	0	0
$13: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$14: 00$	0	0	0	0	0	0	0	0
$14: 15$	0	0	0	0	0	0	0	0
$14: 30$	0	0	0	0	0	0	0	0
$14: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$15: 00$	0	0	1	0	0	0	0	1
$15: 15$	0	0	0	0	0	0	0	0
$15: 30$	0	0	0	0	0	0	0	0
$15: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	1	0	0	0	0	1
$16: 00$	0	0	0	0	0	0	0	0
$16: 15$	0	0	0	0	0	0	0	0
$16: 30$	0	0	0	0	0	0	0	0
$16: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$17: 00$	0	0	0	0	0	0	0	0
$17: 15$	0	0	0	0	0	0	0	0
$17: 30$	0	0	0	0	0	0	0	0
$17: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
	0							

3	0	0	0	0	0	0	3
10	1	0	0	0	1	0	12
4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2
7	1	0	0	0	0	0	8
1	0	0	0	0	0	0	1
14	1	0	0	0	0	0	15
1	1	0	0	0	0	0	2
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
5	0	1	0	0	0	0	6
9	1	1	0	0	0	0	11
0	0	0	0	0	0	0	0
1	0	1	0	0	0	0	2
0	1	0	0	0	0	0	1
4	0	0	0	0	0	0	4
5	1	1	0	0	0	0	7
2	0	0	0	0	0	0	2
4	0	0	0	0	0	0	4
4	1	0	0	0	0	0	5
2	0	0	0	0	0	0	2
12	1	0	0	0	0	0	13
3	0	1	0	0	0	0	4
2	0	0	2	0	0	0	4
2	0	0	0	0	0	0	2
6	0	0	0	0	0	0	6
13	0	1	2	0	0	0	16
0	0	0	0	0	0	0	0
5	1	0	0	0	0	0	6
4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2
11	1	0	0	0	0	0	12
2	0	0	0	0	0	0	2
2	2	0	0	0	0	0	4
4	1	0	0	0	0	0	5
2	0	0	0	0	0	0	2
10	3	0	0	0	0	0	13
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
1	1	0	0	0	0	,	2
0	0	0	0	0	0	0	0
4	1	0	0	0	0	0	5
4	1	0	0	0	0	0	5
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
10	1	0	0	0	0	0	11

27	0	1	0	0	0	1	29
115	10	1	3	0	1	2	132
11	0	0	3	0	0	0	14
3	3	0	0	0	0	0	6
8	1	0	2	0	0	0	11
7	2	0	0	0	0	0	9
29	6	0	5	0	0	0	40
8	0	1	0	0	0	0	9
3	1	0	1	0	0	0	5
7	3	0	0	0	0	0	10
4	2	0	2	0	1	0	9
22	6	1	3	0	1	0	33
5	1	0	0	0	1	0	7
6	1	0	1	0	0	0	8
4	2	0	1	0	0	1	8
9	0	0	0	0	0	0	9
24	4	0	2	0	1	1	32
7	0	3	0	0	0	0	10
2	0	1	1	0	0	0	4
7	1	1	0	0	0	0	9
10	1	1	1	0	0	0	13
26	2	6	2	0	0	0	36
7	1	0	1	0	0	0	9
11	3	1	1	0	0	1	17
10	4	0	0	0	0	0	14
6	1	0	0	0	0	0	7
34	9	1	2	0	0	1	47
13	0	0	1	0	0	0	14
23	1	0	0	0	0	1	25
11	1	0	2	0	0	0	14
6	0	0	0	0	1	0	7
53	2	0	3	0	1	1	60
5	1	0	0	0	0	0	6
12	2	0	0	0	0	0	14
4	1	0	0	0	0	0	5
11	3	1	0	0	0	1	16
32	7	1	0	0	0	1	41
22	6	1	0	1	0	0	30
14	3	1	0	0	0	0	18
7	5	1	0	0	0	0	13
16	2	0	0	0	0	0	18
59	16	3	0	1	0	0	79
16	3	0	0	0	0	1	20
11	0	0	0	0	0	0	11
16	1	0	0	0	0	0	17
15	4	0	0	0	0	0	19
58	8	0	0	0	0	1	67
2							

Origin Arm B Hole in The Wall Road

	Destination: Arm A Belmayne(E)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	1	0	0	0	0	0	0	1
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	

Destination:						Arm B
Hole in The Wall Road	Total					
Car		OGV1	OGV2	PSV	MC	PC

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

693	94	14	21	1	4	13	840

Destination: Arm C Belmayne(W)	Total

Car	LGV	OGV1	OGV2	PSV	MC	PC

6	0	0	0	0	0	1	7
5	0	0	0	0	0	1	6
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
16	0	0	0	0	0	2	18
1	0	0	0	0	0	0	1
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5

1030 | Arm |
| :---: |
| Totals |

$02: 00$	0	0	0	0	0	0	0	0
$02: 15$	0	0	0	0	0	0	0	0
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$03: 00$	0	1	0	0	0	0	0	1
$03: 15$	0	0	0	0	0	0	0	0
$03: 30$	1	0	0	0	0	0	0	1
$03: 45$	0	0	0	0	0	0	0	0
1 Hr	1	1	0	0	0	0	0	2
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	0	0	0	0	0	0	0	0
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$05: 00$	0	0	0	0	0	0	0	0
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$06: 00$	0	0	0	0	0	0	0	0
$06: 15$	0	0	0	0	0	0	0	0
$06: 30$	0	0	0	0	0	0	0	0
$06: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$07: 00$	0	0	0	0	0	0	0	0
$07: 15$	0	0	1	0	0	0	0	1
$07: 30$	0	0	0	0	0	0	0	0
$07: 45$	1	1	0	0	0	0	0	2
1 Hr	1	1	1	0	0	0	0	3
$08: 00$	1	1	0	0	0	0	0	2
$08: 15$	0	0	0	0	0	0	0	0
$08: 30$	1	0	0	0	0	0	0	1
$08: 45$	2	0	0	0	0	0	0	2
1 Hr	4	1	0	0	0	0	0	5
$09: 00$	3	0	0	0	0	0	0	3
$09: 15$	0	0	0	0	0	0	0	0
$09: 30$	1	0	0	0	0	0	0	1
$09: 45$	2	0	0	0	0	0	0	2
1 Hr	6	0	0	0	0	0	0	6
$10: 00$	2	0	0	0	0	0	0	2
$10: 15$	0	0	0	0	0	0	0	0
$10: 30$	3	0	2	0	0	0	0	5
$10: 45$	0	0	0	0	0	0	0	0
$1 H r$	5	0	2	0	0	0	0	7
$11: 00$	0	0	0	0	0	0	0	0
$11: 15$	3	0	0	0	0	0	0	3

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0							

1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1
2	0	0	0	0	0	0	2
5	0	0	0	0	1	0	6
1	1	0	0	0	0	0	2
2	2	0	0	0	0	0	4
5	1	0	0	0	0	0	6
6	0	0	0	0	0	0	6
14	4	0	0	0	0	0	18
7	1	0	0	0	0	0	8
4	1	0	0	0	0	0	5
8	2	1	0	0	0	0	11
14	1	0	0	0	0	0	15
33	5	1	0	0	0	0	39
24	2	0	0	1	1	1	29
27	5	0	0	1	1	0	34
54	6	2	1	0	0	0	63
63	5	1	0	0	0	0	69
168	18	3	1	2	2	1	195
69	6	0	0	0	1	2	78
89	4	0	0	0	1	0	94
61	6	0	0	0	0	1	68
57	4	2	2	1	0	0	66
276	20	2	2	1	2	3	306
39	3	1	0	0	0	0	43
48	4	2	0	0	0	0	54
37	3	1	0	0	0	0	41
31	5	1	0	0	0	0	37
155	15	5	0	0	0	0	175
39	4	3	0	0	0	0	46
37	7	1	0	0	0	1	46
36	4	0	0	0	0	1	41
41	8	4	0	0	0	0	53
153	23	8	0	0	0	2	186
25	3	1	0	0	0	0	29
44	6	1	0	0	1	0	52

11:30	1	0	0	0	0	0	0	1
11:45	0	1	0	0	0	0	0	1
1 Hr	4	1	0	0	0	0	0	5
12:00	3	0	0	0	0	0	0	3
12:15	1	1	0	0	0	0	0	2
12:30	0	0	0	1	0	0	0	1
12:45	2	0	0	0	0	0	0	2
1 Hr	6	1	0	1	0	0	0	8
13:00	3	0	0	0	0	0	0	3
13:15	0	0	0	0	0	0	0	0
13:30	1	0	0	0	0	0	0	1
13:45	2	1	0	0	0	0	0	3
1 Hr	6	1	0	0	0	0	0	7
14:00	4	0	0	0	0	0	0	4
14:15	6	0	0	0	0	0	0	6
14:30	2	0	0	1	0	0	0	3
14:45	2	0	0	0	0	0	0	2
1 Hr	14	0	0	1	0	0	0	15
15:00	1	0	0	0	0	0	0	1
15:15	0	0	0	0	0	0	0	0
15:30	3	0	0	0	0	0	0	3
15:45	2	0	0	0	0	0	0	2
1 Hr	6	0	0	0	0	0	0	6
16:00	2	0	0	0	0	0	0	2
16:15	1	0	0	0	0	0	0	1
16:30	2	0	0	0	0	0	0	2
16:45	6	0	0	0	0	0	0	6
1 Hr	11	0	0	0	0	0	0	11
17:00	1	0	0	0	0	0	0	1
17:15	6	0	0	0	0	0	0	6
17:30	0	0	0	0	0	0	0	0
17:45	2	0	0	0	0	0	0	2
1 Hr	9	0	0	0	0	0	0	9
18:00	5	0	0	0	0	0	0	5
18:15	5	0	0	0	0	0	0	5
18:30	2	0	0	0	0	0	0	2
18:45	2	0	0	0	0	1	0	3
1 Hr	14	0	0	0	0	1	0	15
19:00	3	0	0	0	0	0	0	3
19:15	2	1	0	0	0	0	0	3
19:30	2	0	0	0	0	0	0	2
19:45	3	0	0	0	0	0	0	3
1 Hr	10	1	0	0	0	0	0	11
20:00	1	0	0	0	0	0	0	1
20:15	2	0	0	0	0	0	0	2
20:30	1	0	0	0	0	0	0	1
20:45	1	1	0	0	0	0	0	2

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0							

1 Hr	5	1	0	0	0	0	0	6
$21: 00$	3	0	0	0	0	0	0	3
$21: 15$	1	0	0	0	0	0	0	1
$21: 30$	2	0	0	0	0	0	0	2
$21: 45$	2	0	0	0	0	0	0	2
1 Hr	8	0	0	0	0	0	0	8
$22: 00$	3	0	0	0	0	0	0	3
$22: 15$	0	0	0	0	0	0	0	0
$22: 30$	0	0	0	0	0	0	0	0
$22: 45$	0	0	0	0	0	0	0	0
1 Hr	3	0	0	0	0	0	0	3
$23: 00$	1	0	0	0	0	0	0	1
$23: 15$	1	0	0	0	0	0	0	1
$23: 30$	1	0	0	0	0	0	0	1
$23: 45$	2	0	0	0	0	0	0	2
1 Hr	5	0	0	0	0	0	0	5

Total	119	8	3	2	0	1	0	133

Origin Arm C Belmayne(W)

Destination:	Arm A	Belmayne(E)		Total		
Car	LGV	OGV1	OGV2		MC	PC

\[

\]

4	0	0	0	0	0	0	4
3	0	0	0	0	0	0	3
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
12	0	0	0	0	0	0	12
3	0	0	0	0	0	0	3
4	2	0	0	0	0	0	6
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
11	2	0	0	0	0	0	13
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2

3187	291	45	5	8	15	31	3582

Destination:	Arm C	Belmayne(W)		Total		
Car	LGV	OGV1	OGV2		MC	PC

1 Hr	0	0	0	0	0	0	0	0
$05: 00$	0	0	0	0	0	0	0	0
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	1	0	0	0	0	0	0	1
1 Hr	1	0	0	0	0	0	0	1
$06: 00$	0	0	0	0	0	0	0	0
$06: 15$	4	0	0	0	0	0	1	5
$06: 30$	1	3	0	0	0	0	0	4
$06: 45$	9	8	0	1	0	0	0	18
1 Hr	14	11	0	1	0	0	1	27
$07: 00$	7	2	0	0	0	0	0	9
$07: 15$	11	3	0	0	0	0	0	14
$07: 30$	16	3	1	1	0	0	1	22
$07: 45$	9	5	0	1	0	0	0	15
1 Hr	43	13	1	2	0	0	1	60
$08: 00$	9	1	0	1	0	0	0	11
$08: 15$	17	1	0	0	0	0	1	19
$08: 30$	18	2	1	2	0	0	0	23
$08: 45$	16	1	0	2	0	0	0	19
1 Hr	60	5	1	5	0	0	1	72
$09: 00$	9	2	0	1	0	0	0	12
$09: 15$	10	1	0	1	0	0	0	12
$09: 30$	3	4	0	1	0	0	0	8
$09: 45$	7	2	0	1	0	0	0	10
1 Hr	29	9	0	4	0	0	0	42
$10: 00$	8	4	0	0	0	0	0	12
$10: 15$	7	2	0	1	0	0	0	10
$10: 30$	4	3	0	1	0	1	0	9
$10: 45$	5	2	1	1	0	1	1	11
1 Hr	24	11	1	3	0	2	1	42
$11: 00$	6	0	0	0	0	0	0	6
$11: 15$	4	0	0	0	0	0	0	4
$11: 30$	9	1	0	0	0	0	0	10
$11: 45$	7	0	2	0	0	0	0	9
1 Hr	26	1	2	0	0	0	0	29
$12: 00$	8	1	1	1	0	0	0	11
$12: 15$	6	4	0	1	0	0	0	11
$12: 30$	9	2	1	0	0	0	0	12
$12: 45$	10	2	1	1	0	0	0	14
1 Hr	33	9	3	3	0	0	0	48
$13: 00$	9	2	0	2	0	0	0	13
$13: 15$	16	2	0	0	0	0	0	18
$13: 30$	12	0	0	1	0	0	0	13
$13: 45$	5	3	0	0	0	0	0	8
1 Hr	42	7	0	3	0	0	0	52
$14: 00$	6	1	0	0	0	0	0	7

(Return To Dashboard

14:15	14	0	0	0	0	0	0	14
14:30	23	1	0	0	0	0	0	24
14:45	18	1	0	0	0	0	0	19
1 Hr	61	3	0	0	0	0	0	64
15:00	6	1	1	0	0	0	0	8
15:15	16	3	0	0	0	0	1	20
15:30	6	1	0	0	0	0	0	7
15:45	9	1	1	0	0	0	1	12
1 Hr	37	6	2	0	0	0	2	47
16:00	15	2	0	0	1	0	0	18
16:15	14	1	0	0	0	0	2	17
16:30	13	3	0	0	0	0	1	17
16:45	17	4	0	0	0	0	0	21
1 Hr	59	10	0	0	1	0	3	73
17:00	13	2	0	0	0	0	0	15
17:15	21	1	0	0	0	0	0	22
17:30	20	0	0	0	0	0	1	21
17:45	17	4	0	0	0	0	1	22
1 Hr	71	7	0	0	0	0	2	80
18:00	22	4	0	0	0	0	0	26
18:15	19	1	0	0	0	0	1	21
18:30	26	1	0	0	0	0	0	27
18:45	15	1	0	0	0	0	0	16
1 Hr	82	7	0	0	0	0	1	90
19:00	11	1	0	0	0	0	0	12
19:15	8	0	0	0	0	0	0	8
19:30	10	1	0	0	0	0	1	12
19:45	12	0	0	0	0	0	1	13
1 Hr	41	2	0	0	0	0	2	45
20:00	8	1	0	0	0	0	0	9
20:15	7	0	0	0	0	0	0	7
20:30	8	2	0	0	0	0	0	10
20:45	8	1	0	0	0	0	0	9
1 Hr	31	4	0	0	0	0	0	35
21:00	6	0	0	0	0	0	1	7
21:15	12	0	0	0	0	0	2	14
21:30	4	1	0	0	0	0	0	5
21:45	6	0	0	0	0	0	0	6
1 Hr	28	1	0	0	0	0	3	32
22:00	5	0	0	0	0	0	0	5
22:15	13	2	0	0	0	0	0	15
22:30	5	0	0	0	0	0	0	5
22:45	3	1	0	0	0	0	0	4
1 Hr	26	3	0	0	0	0	0	29
23:00	2	1	0	0	0	0	0	3
23:15	3	0	0	0	0	0	0	3
23:30	4	0	0	0	0	0	0	4

45	5	0	0	2	0	0	52
70	8	0	0	0	0	1	79
74	3	0	0	1	0	0	78
232	19	0	0	3	0	1	255
57	6	0	0	0	0	2	65
55	8	0	0	0	0	0	63
57	9	0	0	0	0	0	66
56	7	0	0	0	0	1	64
225	30	0	0	0	0	3	258
43	6	1	0	0	0	0	50
75	8	1	0	0	0	2	86
65	9	1	0	0	0	2	77
64	6	1	0	0	1	0	72
247	29	4	0	0	1	4	285
63	8	0	0	0	0	1	72
67	6	1	0	0	1	0	75
63	3	1	0	0	2	,	69
70	2	0	0	0	3	1	76
263	19	2	0	0	6	2	292
75	3	0	0	0	0	1	79
79	2	0	0	0	1	1	83
48	4	1	0	0	1	0	54
69	7	0	0	1	0	0	77
271	16	1	0	1	2	2	293
34	3	0	0	0	0	0	37
51	3	0	1	0	0	0	55
40	3	0	0	0	0	2	45
36	4	0	0	0	0	2	42
161	13	0	1	0	0	4	179
41	2	0	0	0	0	0	43
37	4	0	0	0	0	1	42
31	3	0	0	0	0	1	35
35	4	0	0	0	0	0	39
144	13	0	0	0	0	2	159
40	2	0	0	0	0	0	42
32	1	0	0	0	0	0	33
21	2	0	0	0	0	0	23
17	3	0	0	0	0	1	21
110	8	0	0	0	0	1	119
16	2	0	0	0	0	1	19
23	2	0	0	0	0	1	26
14	1	0	0	0	0		15
12	1	0	0	0	0	0	13
65	6	0	0	0	0	2	73
9	1	0	0	0	0	0	10
11	0	0	0	0	0	0	11
5	0	0	0	0	0	0	5

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

$\therefore \stackrel{\rightharpoonup}{\perp} \vec{\omega}|\vec{\omega}| \vec{\omega}$ N

Total	729	111	10	21	1	2	17	891

ORIGINOrigin : Arm A Belmayne(E)								Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	1	0	0	0	0	0	1
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	1	0	0	0	0	0	1
01:00	1	1	0	0	0	0	0	2
01:15	0	0	0	0	0	0	0	0
01:30	1	0	0	0	0	0	0	1
01:45	0	1	0	0	0	0	0	1
1 Hr	2	2	0	0	0	0	0	4
02:00	1	0	0	0	0	0	0	1
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	1	0	0	0	0	0	1
1 Hr	1	1	0	0	0	0	0	2
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	1	0	0	0	0	0	0	1
03:45	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
04:00	0	0	0	0	0	0	0	0
04:15	1	0	0	0	0	0	0	1
04:30	2	0	0	0	0	0	0	2
04:45	0	0	0	0	0	0	0	0
1 Hr	3	0	0	0	0	0	0	3
05:00	1	0	0	0	0	0	0	1
05:15	1	0	0	0	0	0	0	1
05:30	4	0	0	0	0	0	0	4
05:45	3	0	0	0	0	0	0	3
1 Hr	9	0	0	0	0	0	0	9
06:00	5	0	0	0	0	0	0	5
06:15	6	5	0	0	0	0	0	11
06:30	8	1	0	0	0	0	0	9
06:45	6	0	0	0	0	0	,	7
1 Hr	25	6	0	0	0	0	1	32
07:00	11	1	0	0	0	0	0	12
07:15	9	2	0	1	0	0	0	12
07:30	26	3	1	0	0	0	0	30

3121	304	21	3	10	9	30	3498

Origin:	Arm B				Hole in The Wall Road	Total
Car	LGV	OGV1	OGV2	PSV	MC	

6	0	0	0	0	0	1	7
5	0	0	0	0	0	1	6
3	0	0	0	0	0	0	3
3	0	0	0	0	0	0	3
17	0	0	0	0	0	2	19
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
5	1	0	0	0	0	0	6
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1
2	0	0	0	0	0	0	2
5	0	0	0	0	1	0	6
1	1	0	0	0	0	0	2
2	2	0	0	0	0	0	4
5	1	0	0	0	0	0	6
6	0	0	0	0	0	0	6
14	4	0	0	0	0	0	18
7	1	0	0	0	0	0	8
4	1	0	0	0	0	0	5
8	2	1	0	0	0	0	11
14	1	0	0	0	0	0	15
33	5	1	0	0	0	0	39
24	2	0	0	1	1	1	29
27	5	1	0	1	1	0	35
54	6	2	1	0	0	0	63

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
	0	1	1	0	0	0	10

Origin:	Arm C	Belmayne(W)		Total		
Car	LGV	OGV1	OGV2		MC	PC

Origin
Totals

6	0	0	0	0	0	0	6
4	1	0	0	0	0	0	5
4	0	0	0	0	0	0	4
2	0	0	0	0	0	0	2
16	1	0	0	0	0	0	17
3	0	0	0	0	0	0	3
4	2	0	0	0	0	0	6
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
12	2	0	0	0	0	0	14
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2
1	2	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
2	1	0	0	0	0	1	4
4	2	0	0	0	0	1	7
6	1	0	0	0	0	0	7
15	2	0	0	0	0	1	18
11	3	0	0	0	0	0	14
27	9	1	1	0	0	0	38
59	15	1	1	0	0	1	77
27	5	0	0	0	0	0	32
59	13	0	0	1	0	1	74
75	6	2	2	0	0	1	86

(Return To Dashboard

07:45	17	1	0	0	0	0	2	20
1 Hr	63	7	1	1	0	0	2	74
08:00	24	2	0	2	0	0	1	29
08:15	34	4	0	1	0	1	0	40
08:30	37	5	0	0	0	1	0	43
08:45	30	0	1	0	0	0	1	32
1 Hr	125	11	1	3	0	2	2	144
09:00	15	0	0	3	0	0	0	18
09:15	5	3	0	0	0	0	0	8
09:30	15	2	0	2	0	0	0	19
09:45	8	2	0	0	0	0	0	10
1 Hr	43	7	0	5	0	0	0	55
10:00	9	1	1	0	0	0	0	11
10:15	4	1	0	1	0	0	0	6
10:30	9	3	0	0	0	0	0	12
10:45	9	2	1	2	0	1	0	15
1 Hr	31	7	2	3	0	1	0	44
11:00	5	1	0	0	0	1	0	7
11:15	7	1	1	1	0	0	0	10
11:30	4	3	0	1	0	0	1	9
11:45	13	0	0	0	0	0	0	13
1 Hr	29	5	1	2	0	1	1	39
12:00	9	0	3	0	0	0	0	12
12:15	6	0	1	1	0	0	0	8
12:30	11	2	1	0	0	0	0	14
12:45	12	1	1	1	0	0	0	15
1 Hr	38	3	6	2	0	0	0	49
13:00	10	1	1	1	0	0	0	13
13:15	13	3	1	3	0	0	1	21
13:30	12	4	0	0	0	0	0	16
13:45	12	1	0	0	0	0	0	13
1 Hr	47	9	2	4	0	0	1	63
14:00	13	0	0	1	0	0	0	14
14:15	28	2	0	0	0	0	1	31
14:30	15	1	0	2	0	0	0	18
14:45	8	0	0	0	0	1	0	9
1 Hr	64	3	0	3	0	1	1	72
15:00	7	1	1	0	0	0	0	9
15:15	14	4	0	0	0	0	0	18
15:30	8	2	0	0	0	0	0	10
15:45	13	3	1	0	0	0	1	18
1 Hr	42	10	2	0	0	0	1	55
16:00	24	6	1	0	1	0	0	32
16:15	15	3	1	0	0	0	0	19
16:30	8	6	1	0	0	0	0	15
16:45	16	2	0	0	0	0	0	18
1 Hr	63	17	3	0	1	0	0	84

64	6	1	0	0	0	0	71
169	19	4	1	2	2	1	198
70	7	0	0	0	1	2	80
89	4	0	0	0	1	0	94
63	6	0	0	0	0	1	70
59	4	2	2	1	0	0	68
281	21	2	2	1	2	3	312
42	3	1	0	0	0	0	46
48	4	2	0	0	0	0	54
38	3	1	0	0	0	0	42
33	5	1	0	0	0	0	39
161	15	5	0	0	0	0	181
41	4	3	0	0	0	0	48
37	7	1	0	0	0	1	46
39	4	2	0	0	0	1	46
41	8	4	0	0	0	0	53
158	23	10	0	0	0	2	193
25	3	1	0	0	0	0	29
47	6	1	0	0	1	0	55
42	7	1	0	0	0	0	50
43	7	0	0	0	1	1	52
157	23	3	0	0	2	1	186
33	4	2	0	0	1	0	40
44	5	0	0	0	0	0	49
45	5	0	1	0	0	0	51
60	5	3	0	0	0	1	69
182	19	5	1	0	1	1	209
54	6	0	0	0	0	1	61
51	2	0	0	0	0	0	53
44	8	1	0	0	0	0	53
59	5	0	0	0	0	3	67
208	21	1	0	0	0	4	234
62	6	1	0	0	0	0	69
79	5	2	0	1	0	1	88
31	9	1	1	1	0	0	43
45	7	1	0	0	0	2	55
217	27	5	1	2	0	3	255
41	5	0	0	1	0	0	47
46	3	0	0	1	0	0	50
53	9	2	0	1	0	0	65
60	5	1	0	0	1	0	67
200	22	3	0	3	1	0	229
56	8	1	0	0	1	0	66
79	5	1	0	0	0	0	85
71	4	0	0	0	0	0	75
65	8	1	0	0	1	3	78
271	25	3	0	0	2	3	304

80	10	0	1	4	0	1	96
241	34	2	3	5	0	3	288
85	7	2	1	0	0	1	96
75	4	0	0	0	0	1	80
64	6	1	2	0	0	1	74
76	6	1	2	0	0	0	85
300	23	4	5	0	0	3	335
70	11	1	1	0	0	0	83
74	7	0	1	0	0	0	82
27	9	2	1	0	0	0	39
43	6	1	2	0	0	1	53
214	33	4	5	0	0	1	257
45	7	2	0	0	0	0	54
41	10	1	1	0	0	0	53
37	6	0	1	0	1	1	46
36	9	2	1	0	1	1	50
159	32	5	3	0	2	2	203
37	2	0	1	0	0	1	41
37	3	0	0	0	0	0	40
50	5	0	0	0	0	0	55
49	4	2	0	0	0	0	55
173	14	2	1	0	0	1	191
56	5	1	1	0	0	0	63
44	7	0	1	0	0	0	52
51	9	1	0	0	0	0	61
59	7	1	1	0	0	0	68
210	28	3	3	0	0	0	244
50	9	0	2	1	0	0	62
78	9	1	0	0	0	1	89
77	6	0	1	0	0	0	84
60	7	1	0	0	0	0	68
265	31	2	3	1	0	1	303
49	4	0	0	0	0	0	53
59	5	0	0	2	0	0	66
93	9	0	0	0	0	1	103
92	4	0	0	1	0	0	97
293	22	0	0	3	0	1	319
63	7	1	0	0	0	2	73
71	11	0	0	0	0	1	83
63	10	0	0	0	0	0	73
65	8	1	0	0	0	2	76
262	36	2	0	0	0	5	305
59	8	1	0	1	0	0	69
89	9	1	0	0	0	4	103
78	12	1	0	0	0	3	94
81	10	1	0	0	1	0	93
307	39	4	0	1	1	7	359

187
560
205
214
187
185
791
147
144
100
102
493
113
105
104
118
440
77
105
114
120
416
115
109
126
152
502
136
163
153
148
600
136
185
164
161
646
129
151
148
161
589
167
207
184
189
747

$17: 00$	20	4	0	0	0	0	1	25
$17: 15$	13	0	0	0	0	0	0	13
$17: 30$	18	1	0	0	0	0	0	19
$17: 45$	17	4	0	0	0	0	0	21
1 Hr	68	9	0	0	0	0	1	78
$18: 00$	13	2	0	0	0	0	0	15
$18: 15$	19	2	0	0	0	0	0	21
$18: 30$	20	1	0	0	0	0	0	21
$18: 45$	16	3	0	0	0	0	2	21
1 Hr	68	8	0	0	0	0	2	78
$19: 00$	19	0	0	0	0	0	0	19
$19: 15$	13	1	0	0	0	0	0	14
$19: 30$	7	2	0	0	0	0	1	10
$19: 45$	22	0	0	0	0	0	0	22
1 Hr	61	3	0	0	0	0	1	65
$20: 00$	7	0	0	0	0	0	0	7
$20: 15$	8	1	0	0	0	0	0	9
$20: 30$	7	0	0	0	0	0	0	7
$20: 45$	11	2	0	0	0	0	0	13
1 Hr	33	3	0	0	0	0	0	36
$21: 00$	5	1	0	0	0	0	0	6
$21: 15$	6	0	0	0	0	0	0	6
$21: 30$	9	0	0	0	0	0	0	9
$21: 45$	4	0	0	0	0	0	0	4
1 Hr	24	1	0	0	0	0	0	25
$22: 00$	2	1	0	0	0	0	0	3
$22: 15$	5	0	0	0	0	0	0	5
$22: 30$	0	0	0	0	0	0	0	0
$22: 45$	2	0	0	0	0	0	0	2
1 Hr	9	1	0	0	0	0	0	10
$23: 00$	1	0	0	0	0	0	0	1
$23: 15$	3	0	0	0	0	0	0	3
$23: 30$	2	0	0	0	0	0	0	2
$23: 45$	1	0	0	0	0	0	0	1
1 Hr	7	0	0	0	0	0	0	7
Total	856	114	18	23	1	5	13	1030

DESTINATION SUMMARY

$00: 00$	2	0	0	0	0	0	0	2
$00: 15$	1	1	0	0	0	0	0	2
$00: 30$	1	0	0	0	0	0	0	1
$00: 45$	0	0	0	0	0	0	0	0
1 Hr	4	1	0	0	0	0	0	5

Destination: Arm B Hole in The Wall Road Total Car LGV OGV1 PSV						MC

3858	415	32	25	11	11	47	4399

Destination:	Arm C	Belmayne(W)		Total		
Car						

6	1	0	0	0	0	1	8
5	0	0	0	0	0	1	6
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
16	1	0	0	0	0	2	19

$01: 00$	1	0	0	0	0	0	0	1
$01: 15$	0	0	0	0	0	0	0	0
$01: 30$	1	0	0	0	0	0	0	1
$01: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	1	0	0	0	0	0	0	1
1 Hr	3	0	0	0	0	0	0	3
$03: 00$	0	1	0	0	0	0	0	1
$03: 15$	0	0	0	0	0	0	0	0
$03: 30$	1	0	0	0	0	0	0	1
$03: 45$	0	0	0	0	0	0	0	0
1 Hr	1	1	0	0	0	0	0	2
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	0	0	0	0	0	0	0	0
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$05: 00$	0	0	0	0	0	0	0	0
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	1	0	0	0	0	0	0	1
1 Hr	1	0	0	0	0	0	0	1
$06: 00$	0	0	0	0	0	0	0	0
$06: 15$	4	0	0	0	0	0	1	5
$06: 30$	1	3	0	0	0	0	0	4
$06: 45$	9	8	0	1	0	0	0	18
1 Hr	14	11	0	1	0	0	1	27
$07: 00$	7	2	0	0	0	0	0	9
$07: 15$	11	3	1	0	0	0	0	15
$07: 30$	16	4	1	1	0	0	1	23
$07: 45$	10	6	0	1	0	0	0	17
1 Hr	44	15	2	2	0	0	1	64
$08: 00$	10	2	0	1	0	0	0	13
$08: 15$	17	1	0	0	0	0	1	19
$08: 30$	19	2	1	2	0	0	0	24
$08: 45$	18	1	0	2	0	0	0	21
1 Hr	64	6	1	5	0	0	1	77
$09: 00$	12	2	0	1	0	0	0	15
$09: 15$	10	1	0	1	0	0	0	12
$09: 30$	4	4	0	1	0	0	0	9
$09: 45$	9	2	0	1	0	0	0	12
1 Hr	35	9	0	4	0	0	0	48
$10: 00$	10	4	0	0	0	0	0	14
$10: 15$	7	2	0	1	0	0	0	10

3	0	0	0	0	0	0	3
4	2	0	0	0	0	0	6
4	0	0	0	0	0	0	4
1	1	0	0	0	0	0	2
12	3	0	0	0	0	0	15
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	1
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	2	0	0	0	0	0	2
1	2	0	0	0	0	0	3
2	0	0	0	0	0	0	2
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
2	1	0	0	0	0	1	4
7	2	0	0	0	0	1	10
7	1	0	0	0	0	0	8
12	3	0	0	0	0	0	15
13	0	0	0	0	0	0	13
18	1	1	0	0	0	0	20
50	5	1	0	0	0	0	56
20	4	0	0	0	0	0	24
51	10	0	0	1	0	1	63
62	5	0	0	0	0	0	67
73	6	0	0	4	0	1	84
206	25	0	0	5	0	2	238
79	6	2	0	0	0	1	88
58	4	0	0	0	0	0	62
51	4	0	0	0	1	1	57
63	5	1	0	0	0	0	69
251	19	3	0	0	1	2	276
65	9	1	0	0	0	0	75
66	6	0	0	0	0	0	72
30	6	2	0	0	0	0	38
37	4	1	1	0	0	1	44
198	25	4	1	0	0	1	229
38	4	2	0	0	0	0	44
35	8	1	0	0	0	0	44

2	1	0	0	0	0	0	3
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
2	0	0	0	0	1	0	3
2	0	0	0	0	0	0	2
8	0	0	0	0	1	0	9
1	1	0	0	0	0	0	2
2	2	0	0	0	0	0	4
8	1	0	0	0	0	0	9
8	0	0	0	0	0	0	8
19	4	0	0	0	0	0	23
11	1	0	0	0	0	0	12
9	5	0	0	0	0	0	14
13	3	1	0	0	0	0	17
20	1	0	0	0	0	1	22
53	10	1	0	0	0	1	65
35	2	0	0	1	1	1	40
33	7	0	1	1	1	0	43
77	6	4	2	0	0	0	89
78	5	1	0	0	0	2	86
223	20	5	3	2	2	3	258
90	8	0	2	0	1	3	104
123	7	0	1	0	2	0	133
94	11	0	0	0	0	1	106
84	4	3	2	1	0	1	95
391	30	3	5	1	3	5	438
50	3	1	3	0	0	0	57
51	7	2	0	0	0	0	60
46	4	1	2	0	0	0	53
38	7	1	0	0	0	0	46
185	21	5	5	0	0	0	216
47	4	4	0	0	0	0	55
40	8	1	1	0	0	1	51

10:30	7	3	2	1	0	1	0	14
10:45	5	2	1	1	0	1	1	11
1 Hr	29	11	3	3	0	2	1	49
11:00	6	0	0	0	0	0	0	6
11:15	7	0	0	0	0	0	0	7
11:30	10	1	0	0	0	0	0	11
11:45	7	1	2	0	0	0	0	10
1 Hr	30	2	2	0	0	0	0	34
12:00	11	1	1	1	0	0	0	14
12:15	7	5	0	1	0	0	0	13
12:30	9	2	1	1	0	0	0	13
12:45	12	2	1	1	0	0	0	16
1 Hr	39	10	3	4	0	0	0	56
13:00	12	2	0	2	0	0	0	16
13:15	16	2	0	0	0	0	0	18
13:30	13	0	0	1	0	0	0	14
13:45	7	4	0	0	0	0	0	11
1 Hr	48	8	0	3	0	0	0	59
14:00	10	1	0	0	0	0	0	11
14:15	20	0	0	0	0	0	0	20
14:30	25	1	0	1	0	0	0	27
14:45	20	1	0	0	0	0	0	21
1 Hr	75	3	0	1	0	0	0	79
15:00	7	1	2	0	0	0	0	10
15:15	16	3	0	0	0	0	1	20
15:30	9	1	0	0	0	0	0	10
15:45	11	1	1	0	0	0	1	14
1 Hr	43	6	3	0	0	0	2	54
16:00	17	2	0	0	1	0	0	20
16:15	15	1	0	0	0	0	2	18
16:30	15	3	0	0	0	0	1	19
16:45	23	4	0	0	0	0	0	27
1 Hr	70	10	0	0	1	0	3	84
17:00	14	2	0	0	0	0	0	16
17:15	27	1	0	0	0	0	0	28
17:30	20	0	0	0	0	0	1	21
17:45	19	4	0	0	0	0	1	24
1 Hr	80	7	0	0	0	0	2	89
18:00	27	4	0	0	0	0	0	31
18:15	24	1	0	0	0	0	1	26
18:30	28	1	0	0	0	0	0	29
18:45	17	1	0	0	0	1	0	19
1 Hr	96	7	0	0	0	1	1	105
19:00	14	1	0	0	0	0	0	15
19:15	10	1	0	0	0	0	0	11
19:30	12	1	0	0	0	0	1	14
19:45	15	0	0	0	0	0	1	16

35	3	0	0	0	0	1	39
36	7	2	0	0	0	0	45
144	22	5	0	0	0	1	172
31	2	0	1	0	0	1	35
34	3	1	0	0	0	0	38
41	5	0	0	0	0	0	46
46	4	0	0	0	0	0	50
152	14	1	1	0	0	1	169
50	4	0	0	0	0	0	54
42	3	0	0	0	0	0	45
46	8	0	0	0	0	0	54
51	5	0	0	0	0	0	56
189	20	0	0	0	0	0	209
43	7	1	0	1	0	0	52
62	7	1	2	0	0	1	73
67	6	0	0	0	0	0	73
61	4	1	0	0	0	0	66
233	24	3	2	1	0	1	264
43	3	0	0	0	0	0	46
50	6	0	0	2	0	0	58
74	8	0	0	0	0	1	83
76	3	0	0	1	0	0	80
243	20	0	0	3	0	1	267
59	6	0	0	0	0	2	67
57	10	0	0	0	0	0	67
61	11	0	0	0	0	0	72
58	7	0	0	0	0	1	66
235	34	0	0	0	0	3	272
45	6	1	0	0	0	0	52
76	8	1	0	0	0	2	87
66	10	1	0	0	0	2	79
64	6	1	0	0	1	0	72
251	30	4	0	0	1	4	290
67	9	0	0	0	0	1	77
69	6	1	0	0	1	0	77
65	3	1	0	0	2	0	71
72	2	0	0	0	3	1	78
273	20	2	0	0	6	2	303
76	3	0	0	0	0	1	80
82	3	0	0	0	1	1	87
55	4	1	0	0	1	0	61
73	7	0	0	1	0	0	81
286	17	1	0	1	2	2	309
38	3	0	0	0	0	0	41
56	3	0	1	0	0	0	60
40	3	0	0	0	0	2	45
43	4	0	0	0	0	2	49

43	7	0	0	0	0	1	51
45	10	4	2	0	1	0	62
175	29	9	3	0	1	2	219
30	4	1	0	0	1	0	36
50	7	1	1	0	1	0	60
45	9	1	1	0	0	1	57
52	6	0	0	0	1	1	60
177	26	3	2	0	3	2	213
37	4	5	0	0	1	0	47
45	4	1	1	0	0	0	51
52	6	1	0	0	0	0	59
68	6	4	1	0	0	1	80
202	20	11	2	0	1	1	237
59	7	0	1	0	0	1	68
64	5	1	1	0	0	1	72
53	12	1	0	0	0	0	66
63	5	0	0	0	0	3	71
239	29	2	2	0	0	5	277
71	6	1	1	0	0	0	79
96	6	2	0	1	0	2	107
40	10	1	2	1	0	0	54
49	7	1	0	0	1	2	60
256	29	5	3	2	1	4	300
45	6	0	0	1	0	0	52
58	5	0	0	1	0	0	64
54	9	2	0	1	0	0	66
69	8	2	0	0	1	1	81
226	28	4	0	3	1	1	263
77	14	2	0	1	1	0	95
92	8	2	0	0	0	0	102
76	9	1	0	0	0	0	86
75	10	1	0	0	1	3	90
320	41	6	0	1	2	3	373
105	8	1	0	0	0	2	116
82	8	0	1	0	0	1	92
78	8	1	0	0	2	0	89
111	10	0	1	0	2	0	124
376	34	2	2	0	4	3	421
86	9	0	0	0	0	0	95
116	8	0	0	0	0	3	127
81	4	0	0	0	0	0	85
66	9	1	0	0	0	2	78
349	30	1	0	0	0	5	385
89	1	0	0	0	0	0	90
59	4	0	0	0	0	0	63
48	7	0	0	0	0	1	56
77	2	0	0	0	0	0	79
7							

1 Hr	51	3	0	0	0	0	2	56
20:00	9	1	0	0	0	0	0	10
20:15	9	0	0	0	0	0	0	9
20:30	9	2	0	0	0	0	0	11
20:45	9	2	0	0	0	0	0	11
1 Hr	36	5	0	0	0	0	0	41
21:00	9	0	0	0	0	0	1	10
21:15	13	0	0	0	0	0	2	15
21:30	6	1	0	0	0	0	0	7
21:45	8	0	0	0	0	0	0	8
1 Hr	36	1	0	0	0	0	3	40
22:00	8	0	0	0	0	0	0	8
22:15	13	2	0	0	0	0	0	15
22:30	5	0	0	0	0	0	0	5
22:45	3	1	0	0	0	0	0	4
1 Hr	29	3	0	0	0	0	0	32
23:00	3	1	0	0	0	0	0	4
23:15	4	0	0	0	0	0	0	4
23:30	5	0	0	0	0	0	0	5
23:45	6	0	0	0	0	0	0	6
1 Hr	18	1	0	0	0	0	0	19
Total	848	120	14	23	1	3	17	1026

177	13	0	1	0	0	4	195
41	2	0	0	0	0	0	43
37	4	0	0	0	0	1	42
32	3	0	0	0	0	1	36
35	4	0	0	0	0	0	39
145	13	0	0	0	0	2	160
43	2	0	0	0	0	0	45
36	1	0	0	0	0	0	37
23	2	0	0	0	0	0	25
19	3	0	0	0	0	1	23
121	8	0	0	0	0	1	130
16	2	0	0	0	0	1	19
25	2	0	0	0	0	1	28
14	1	0	0	0	0	0	15
12	1	0	0	0	0	0	13
67	6	0	0	0	0	2	75
10	1	0	0	0	0	0	11
12	0	0	0	0	0	0	12
7	0	0	0	0	0	0	7
2	0	0	0	0	0	0	2
31	1	0	0	0	0	0	32
3288	324	24	5	10	10	30	3691

273	14	0	0	0	0	1	288
48	3	0	0	0	0	2	53
49	3	1	0	0	0	1	54
44	1	0	0	0	0	1	46
34	2	0	0	0	0	0	36
175	9	1	0	0	0	4	189
27	2	1	0	0	0	1	31
27	0	0	0	0	0	0	27
35	0	0	0	0	0	0	35
21	3	0	0	0	0	0	24
110	5	1	0	0	0	1	117
24	1	0	0	0	0	0	25
18	1	0	0	0	0	0	19
13	1	0	0	0	0	0	14
8	0	0	0	0	0	0	8
63	3	0	0	0	0	0	66
9	1	0	0	0	0	0	10
11	0	0	0	0	0	0	11
9	0	1	0	0	0	1	11
9	0	0	0	0	0	0	9
38	1	1	0	0	0	1	41
3888	385	60	27	9	19	44	4432

539
106
105
93
86
390
86
79
67
55
287
52
62
34
25
173
25
27
23
17
92
9149

SITE 4
(c)

A Marrsfield Ave
(B) Ma,

[^16](Return To Dashboard

Origin	Destination: Arm A Marrsfield Avenue(ESE)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	0
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
05:00	0	0	0	0	0	0	0	0
05:15	0	0	0	0	0	0	0	0
05:30	0	0	0	0	0	0	0	0
05:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
06:00	0	0	0	0	0	0	0	0
06:15	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	0	0	0
06:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
07:00	0	0	0	0	0	0	0	0
07:15	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	0
07:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	0
08:15	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0

Destination: Arm B Park Avenue							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1

Destination: Arm C Marrsfield Avenue(WNW)							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
5	0	0	0	0	0	0	5
8	0	0	0	0	0	0	8
4	2	0	0	0	0	1	7
4	0	0	0	0	0	0	4
3	1	0	0	0	0	2	6
19	3	0	0	0	0	3	25
9	0	0	0	0	0	0	9
11	2	0	1	0	0	0	14
11	1	0	0	0	0	0	12
12	1	0	1	0	0	0	14
43	4	0	2	0	0	0	49
12	3	0	0	0	0	3	18
7	0	1	0	0	0	0	8
10	1	0	1	0	0		12

(Return To Dashboard

$08: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$09: 00$	0	0	0	0	0	0	0	0
$09: 15$	0	0	0	0	0	0	0	0
$09: 30$	0	0	0	0	0	0	0	0
$09: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$10: 00$	0	0	0	0	0	0	0	0
$10: 15$	0	0	0	0	0	0	0	0
$10: 30$	0	0	0	0	0	0	0	0
$10: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$11: 00$	0	0	0	0	0	0	0	0
$11: 15$	0	0	0	0	0	0	0	0
$11: 30$	0	0	0	0	0	0	0	0
$11: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$12: 00$	0	0	0	0	0	0	0	0
$12: 15$	0	0	0	0	0	0	0	0
$12: 30$	0	0	0	0	0	0	0	0
$12: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$13: 00$	0	0	0	0	0	0	0	0
$13: 15$	0	0	0	0	0	0	0	0
$13: 30$	0	0	0	0	0	0	0	0
$13: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$14: 00$	0	0	0	0	0	0	0	0
$14: 15$	0	0	0	0	0	0	0	0
$14: 30$	0	0	0	0	0	0	0	0
$14: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$15: 00$	0	0	0	0	0	0	0	0
$15: 15$	0	0	0	0	0	0	0	0
$15: 30$	0	0	0	0	0	0	0	0
$15: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$16: 00$	0	0	0	0	0	0	0	0
$16: 15$	0	0	0	0	0	0	0	0
$16: 30$	0	0	0	0	0	0	0	0
$16: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
$17: 00$	0	0	0	0	0	0	0	0
$17: 15$	0	0	0	0	0	0	0	0
$17: 30$	0	0	0	0	0	0	0	0
$17: 45$	0	0	0	0	0	0	0	0
$1 H r$	0	0	0	0	0	0	0	0
10								

0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4
6	0	0	0	0	0	0	6
0	1	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	1
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
2	0	0	0	0	0	2	4
7	0	0	0	0	0	2	9
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
3	1	0	0	0	0	0	4
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
6	1	0	0	0	0	0	7
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
4	0	0	0	0	0	0	4

10	0	0	2	0	1	0	13
39	4	1	3	0	1	3	51
6	0	1	0	0	0	0	7
4	0	0	1	0	0	0	5
4	1	1	1	0	0	0	7
6	1	0	1	0	0	1	9
20	2	2	3	0	0	1	28
3	3	0	0	0	0	0	6
3	0	1	0	0	0	0	4
2	1	0	1	0	0	0	4
3	2	2	0	0	0	0	7
11	6	3	1	0	0	0	21
2	0	0	2	0	0	0	4
6	1	1	0	0	0	0	8
4	2	2	0	0	0	0	8
5	2	1	1	0	0	0	9
17	5	4	3	0	0	0	29
7	0	0	0	0	0	0	7
6	1	1	1	0	0	1	10
8	0	1	0	0	0	0	9
3	1	0	0	0	0	0	4
24	2	2	1	0	0	1	30
5	1	0	0	0	0	0	6
5	1	0	0	0	0	0	6
2	1	0	0	0	0	0	3
10	1	0	0	0	0	0	11
22	4	0	0	0	0	0	26
2	0	0	1	0	0	0	3
8	0	1	0	0	0	0	9
8	3	0	1	0	0	0	12
2	1	1	1	0	0	0	5
20	4	2	3	0	0	0	29
2	1	2	0	0	0	0	5
4	1	1	0	0	0	0	6
8	1	0	0	0	0	0	9
16	1	0	1	0	0	0	18
30	4	3	1	0	0	0	38
16	4	0	0	0	0	0	20
6	7	0	1	0	0	1	15
12	7	0	0	0	0	0	19
7	3	0	0	0	0	0	10
41	21	0	1	0	0	1	64
14	1	0	0	0	0	0	15
9	0	0	0	0	0	0	9
8	1	0	0	0	0	0	9
12	2	0	0	0	0	0	14
43	4	0	0	0	0	0	47

Origin Arm B Park Avenue

	Destination : Arm A Marrsfield Avenue(E)							Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0

Destination : Arm B Park Avenue \begin{tabular}{llllll|l|}
\hline Car \& LGV \& OGV1 \& OGV2 \& PSV \& MC \& PC

 Total

\hline
\end{tabular}

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

430	72	17	18	0	1	10	548

| Destination: Arm C Marrsfield Avenue(WNW) | Total |
| :--- | :--- | :--- |

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(Return To Dashboard

$02: 00$	0	0	0	0	0	0	0	0
$02: 15$	0	0	0	0	0	0	0	0
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$03: 00$	1	0	0	0	0	0	0	1
$03: 15$	0	0	0	0	0	0	0	0
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	0	0	0	0	0	0	0	0
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$05: 00$	1	0	0	0	0	0	0	1
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
$06: 00$	0	0	0	0	0	0	0	0
$06: 15$	0	0	0	0	0	0	0	0
$06: 30$	0	0	0	0	0	0	0	0
$06: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$07: 00$	0	0	0	0	0	0	0	0
$07: 15$	0	1	0	0	0	0	0	1
$07: 30$	0	0	0	0	0	0	0	0
$07: 45$	0	0	0	0	0	0	0	0
1 Hr	0	1	0	0	0	0	0	1
$08: 00$	0	0	0	0	0	0	0	0
$08: 15$	0	0	0	0	0	0	0	0
$08: 30$	2	0	0	0	0	0	0	2
$08: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$09: 00$	0	1	0	0	0	0	0	1
$09: 15$	5	0	0	0	0	0	0	5
$09: 30$	1	0	0	0	0	0	0	1
$09: 45$	0	0	0	0	0	0	0	0
1 Hr	6	1	0	0	0	0	0	7
$10: 00$	1	0	0	0	0	0	0	1
$10: 15$	1	0	0	0	0	0	1	2
$10: 30$	0	0	0	0	0	0	0	0
$10: 45$	2	0	0	0	0	0	0	2
1 Hr	4	0	0	0	0	0	1	5
$11: 00$	1	0	0	0	0	0	0	1
$11: 15$	3	3	0	0	0	0	0	6

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	1	0	0	0	0	0	3
4	1	0	0	0	0	0	5
4	0	0	0	0	0	0	4
4	1	0	0	0	0	0	5
11	0	0	0	0	0	0	11
5	2	0	0	0	0	0	7
24	3	0	0	0	0	0	27
11	1	0	0	0	1	1	14
19	0	0	0	0	0	0	19
28	0	0	0	0	0	0	28
12	0	0	0	0	0	0	12
70	1	0	0	0	1	1	73
5	0	0	0	0	0	0	5
8	0	0	0	0	0	0	8
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
18	0	0	0	0	0	0	18
3	2	0	0	0	0	0	5
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	5
14	2	0	0	0	0	0	16
3	1	0	0	0	0	0	4
1	0	0	0	0	0	0	1

(Return To Dashboard

11:30	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	0
1 Hr	4	3	0	0	0	0	0	7
12:00	0	0	0	0	0	0	0	0
12:15	1	0	0	0	0	0	0	1
12:30	0	1	0	0	0	0	0	1
12:45	4	0	0	0	0	0	0	4
1 Hr	5	1	0	0	0	0	0	6
13:00	1	0	0	0	0	0	0	1
13:15	2	0	0	0	0	0	0	2
13:30	1	0	0	0	0	0	0	1
13:45	1	1	0	0	0	0	0	2
1 Hr	5	1	0	0	0	0	0	6
14:00	2	2	0	0	0	0	0	4
14:15	5	0	0	0	0	0	0	5
14:30	3	0	0	0	0	0	0	3
14:45	1	0	0	0	0	0	0	1
1 Hr	11	2	0	0	0	0	0	13
15:00	2	0	0	0	0	0	0	2
15:15	1	0	0	0	0	0	0	1
15:30	1	0	0	0	0	0	0	1
15:45	0	0	0	0	0	0	2	2
1 Hr	4	0	0	0	0	0	2	6
16:00	2	0	0	0	0	0	0	2
16:15	0	0	0	0	0	0	0	0
16:30	1	0	0	0	0	0	0	1
16:45	1	0	0	0	0	0	0	1
1 Hr	4	0	0	0	0	0	0	4
17:00	5	1	0	0	0	0	1	7
17:15	0	0	0	0	0	0	0	0
17:30	3	1	0	0	0	0	0	4
17:45	0	0	0	0	0	0	1	1
1 Hr	8	2	0	0	0	0	2	12
18:00	4	0	0	0	0	0	0	4
18:15	3	0	0	0	0	0	0	3
18:30	1	0	0	0	0	0	0	1
18:45	4	0	0	0	0	0	0	4
1 Hr	12	0	0	0	0	0	0	12
19:00	5	0	0	0	0	0	1	6
19:15	5	0	0	0	0	0	0	5
19:30	2	0	0	0	0	0	0	2
19:45	2	0	0	0	0	0	0	2
1 Hr	14	0	0	0	0	0	1	15
20:00	2	0	0	0	0	0	0	2
20:15	3	0	0	0	0	0	0	3
20:30	1	0	0	0	0	0	0	1
20:45	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
		0					

		0	1	0	0	0	0
4	0	0	0	0	0	0	4
12	1	1	0	0	0	0	14
8	2	0	0	0	0	0	10
0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	4
6	1	0	0	0	0	0	7
18	3	0	0	0	0	0	21
2	0	0	0	0	0	0	2
5	0	0	0	0	0	0	5
1	1	0	0	0	0	0	2
3	0	1	0	0	0	0	4
11	1	1	0	0	0	0	13
9	0	0	0	0	0	0	9
12	0	1	0	0	0	0	13
2	0	0	0	0	0	0	2
4	0	0	0	0	0	0	4
27	0	1	0	0	0	0	28
4	1	0	0	0	0	0	5
10	0	1	0	0	0	0	11
2	0	0	0	0	0	1	3
7	2	0	0	0	0	1	10
23	3	1	0	0	0	2	29
7	0	0	0	0	0	0	7
4	1	1	0	0	0	0	6
1	0	0	0	0	0	0	1
5	1	0	0	0	0	0	6
17	2	1	0	0	0	0	20
1	0	0	0	0	0	0	1
3	1	0	0	0	0	0	4
7	0	0	0	0	0	0	7
17	3	0	0	0	0	0	20
28	4	0	0	0	0	0	32
7	0	0	0	0	0	0	7
10	0	0	0	0	0	0	10
3	0	0	0	0	0	0	3
10	0	0	0	0	0	1	11
30	0	0	0	0	0	1	31
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
3	0	0	0	0	0	0	3
6	0	0	0	0	0	0	6
14	0	0	0	0	0	0	14
7	0	0	0	0	0	0	7
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
4	1	0	0	0	0	0	5

5
4
21
10
1
5
11
27
3
7
3
6
19
13
18
5
5
41
7
12
4
12
35
9
6
2
7
24
8
4
11
21
44
11
13
4
15
43
8
8

1 Hr	4	0	0	0	0	0	0	6
$21: 00$	4	0	0	0	0	0	0	4
$21: 15$	1	0	0	0	0	0	0	1
$21: 30$	2	0	0	0	0	0	0	2
$21: 45$	0	0	0	0	0	0	0	0
1 Hr	7	0	0	0	0	0	0	7
$22: 00$	3	1	0	0	0	1	0	5
$22: 15$	1	0	0	0	0	0	0	1
$22: 30$	0	0	0	0	0	0	0	0
$22: 45$	0	0	0	0	0	0	0	0
1 Hr	4	1	0	0	0	1	0	6
$23: 00$	0	0	0	0	0	0	0	0
$23: 15$	4	0	0	0	0	0	0	4
$23: 30$	1	0	0	0	0	0	0	1
$23: 45$	0	0	0	0	0	0	0	0
1 Hr	5	0	0	0	0	0	0	5

Total	101	12	0	0	0	1	6	122

Origin Arm C Marrsfield Avenue(WNW) | Destination: | Arm A | Marrsfield Avenue(E) | Total | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Car | LGV | OGV1 | | PSV | MC | PC |

$00: 00$	1	0	0	0	0	0	1	2
$00: 15$	0	0	0	0	0	0	0	0
$00: 30$	1	0	0	0	0	0	0	1
$00: 45$	0	0	0	0	0	0	1	1
1 Hr	2	0	0	0	0	0	2	4
$01: 00$	0	0	0	0	0	0	0	0
$01: 15$	1	0	0	0	0	0	0	1
$01: 30$	1	0	0	0	0	0	0	1
$01: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$03: 00$	0	0	0	0	0	0	0	0
$03: 15$	1	0	0	0	0	0	0	1
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	0	0	0	0	0	0	0	0
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0						

Destination:	Arm B	Park Avenue		Total		
Car	LGV	OGV1	OGV2		MC	PC

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

343	22	5	0	0	1	5	376

Destination :	Arm C	Marrsfield Avenue(WNW)		Total			
Car							LGV

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(Return To Dashboard

1 Hr	0	0	0	0	0	0	0	0
$05: 00$	0	0	0	0	0	0	0	0
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	1	0	0	0	0	0	0	1
1 Hr	1	0	0	0	0	0	0	1
$06: 00$	1	0	0	0	0	0	0	1
$06: 15$	0	0	0	0	0	0	0	0
$06: 30$	4	5	0	0	0	0	0	9
$06: 45$	6	4	0	0	0	0	0	10
1 Hr	11	9	0	0	0	0	0	20
$07: 00$	2	4	0	1	0	0	0	7
$07: 15$	13	5	0	0	0	0	0	18
$07: 30$	8	1	0	1	0	0	0	10
$07: 45$	7	2	2	0	0	0	0	11
1 Hr	30	12	2	2	0	0	0	46
$08: 00$	8	2	0	1	0	0	0	11
$08: 15$	4	1	0	1	0	0	0	6
$08: 30$	5	1	0	1	0	0	0	7
$08: 45$	4	0	1	0	0	0	0	5
1 Hr	21	4	1	3	0	0	0	29
$09: 00$	5	0	0	1	0	0	0	6
$09: 15$	2	1	0	1	0	0	0	4
$09: 30$	3	1	0	1	0	0	0	5
$09: 45$	3	1	0	0	0	0	0	4
1 Hr	13	3	0	1	0	0	0	19
$10: 00$	2	1	1	1	0	0	0	5
$10: 15$	3	2	1	0	0	0	0	6
$10: 30$	0	2	0	1	0	0	0	3
$10: 45$	3	0	1	1	0	0	0	5
1 Hr	8	5	3	3	0	0	0	19
$11: 00$	4	1	0	1	0	0	1	7
$11: 15$	4	3	2	0	0	0	0	9
$11: 30$	4	0	1	1	0	0	0	6
$11: 45$	2	1	0	0	0	0	1	4
1 Hr	14	5	3	2	0	0	2	26
$12: 00$	6	0	0	1	0	0	0	7
$12: 15$	3	3	1	0	0	0	0	7
$12: 30$	3	0	0	0	0	0	0	3
$12: 45$	4	3	0	0	0	0	0	7
1 Hr	16	6	1	1	0	0	0	24
$13: 00$	1	1	1	0	0	0	0	3
$13: 15$	7	2	0	0	0	0	0	9
$13: 30$	8	0	0	1	0	0	1	10
$13: 45$	6	1	0	0	0	0	0	7
1 Hr	22	4	1	1	0	0	1	29
$14: 00$	8	0	0	1	0	0	0	9
10								

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
2	0	0	0	0	0	1	3
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
6	0	0	0	0	0	1	7
3	0	0	0	0	0	0	3
12	1	0	0	0	0	1	14
6	1	0	0	0	0	0	7
8	0	0	0	0	0	2	10
7	0	0	0	0	0	0	7
12	0	0	0	0	0	0	12
33	1	0	0	0	0	2	36
10	1	1	0	0	0	0	12
5	0	0	0	0	0	0	5
2	0	0	0	0	0	0	2
4	2	0	0	0	0	0	6
21	3	1	0	0	0	0	25
1	0	0	0	0	0	0	1
4	1	0	0	0	0	0	5
2	0	0	0	0	0	0	2
4	0	0	0	0	0	0	4
11	1	0	0	0	0	0	12
2	3	0	0	0	0	0	5
4	0	0	0	0	0	0	4
3	0	0	0	0	0	0	3
3	2	0	0	0	0	0	5
12	5	0	0	0	0	0	17
4	0	0	0	0	0	0	4
5	1	0	0	0	0	0	6
0	2	0	0	0	1	0	3
3	0	0	0	0	0	0	3
12	3	0	0	0	1	0	16
6	0	0	0	0	0	0	6
6	1	0	0	0	0	0	7
4	0	0	0	0	0	0	4
4	1	0	0	0	0	0	5
20	2	0	0	0	0	0	22
2	0	0	0	0	0	0	2

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0							

0
0
0
0
1
1
1
1
9
12
23
10
19
17
14
60
18
16
14
17
65
18
9
7
10
44
6
11
5
9
31
12
13
9
9
43
11
13
6
10
40
9
16
14
12
51
11

(Return To Dashboard

$14: 15$	3	1	1	1	0	0	0	6
$14: 30$	14	1	0	0	0	0	0	15
$14: 45$	8	0	1	1	0	0	0	10
1 Hr	33	2	2	3	0	0	0	40
$15: 00$	5	0	0	1	0	0	0	6
$15: 15$	3	1	0	0	0	0	0	4
$15: 30$	6	0	0	1	0	0	0	7
$15: 45$	7	1	0	0	0	0	0	8
1 Hr	21	2	0	2	0	0	0	25
$16: 00$	11	0	1	0	0	0	0	12
$16: 15$	7	1	0	0	0	0	0	8
$16: 30$	8	2	0	0	0	0	0	10
$16: 45$	11	3	0	0	0	0	0	14
$1 H r$	37	6	1	0	0	0	0	44
$17: 00$	5	1	0	0	0	0	0	6
$17: 15$	12	0	0	0	0	0	1	13
$17: 30$	6	1	0	0	0	0	0	7
$17: 45$	11	0	0	0	0	0	2	13
$1 H$	34	2	0	0	0	0	3	39
$18: 00$	5	1	0	0	0	0	0	6
$18: 15$	12	0	0	0	0	0	0	12
$18: 30$	7	2	0	0	0	0	0	9
$18: 45$	6	0	0	0	0	0	0	6
$1 H r$	30	3	0	0	0	0	0	33
$19: 00$	6	0	0	0	0	0	0	6
$19: 15$	9	0	0	0	0	0	0	9
$19: 30$	8	0	0	0	0	0	0	8
$19: 45$	4	0	0	0	0	0	0	4
$1 H r$	27	0	0	0	0	0	0	27
$20: 00$	7	1	0	0	0	0	0	8
$20: 15$	9	0	0	0	0	0	1	10
$20: 30$	8	0	0	0	0	0	2	10
$20: 45$	4	0	0	0	0	0	1	5
$1 H r$	28	1	0	0	0	0	4	33
$21: 00$	4	0	0	0	0	0	0	4
$21: 15$	6	1	0	0	0	0	0	7
$21: 30$	9	0	0	0	0	0	0	9
$21: 45$	11	0	0	0	0	0	0	11
$1 H r$	30	1	0	0	0	0	0	31
$22: 00$	7	0	0	0	0	0	0	7
$22: 15$	3	1	0	0	0	0	0	4
$22: 30$	3	0	0	0	0	0	2	5
$22: 45$	4	0	0	0	0	0	0	4
$1 H r$	17	1	0	0	0	0	2	20
$23: 00$	1	0	0	0	0	0	0	1
$23: 15$	6	1	0	0	0	0	0	7
$23: 30$	3	0	0	0	0	0	0	3

3	3	0	0	0	0	0	6
18	3	0	0	0	0	0	21
4	0	0	0	0	0	0	4
27	6	0	0	0	0	0	33
4	0	1	0	0	0	0	5
7	0	0	0	0	0	1	8
6	1	0	0	0	0	0	7
6	1	0	0	0	0	0	7
23	2	1	0	0	0	1	27
14	0	1	0	0	0	0	15
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	5
5	2	0	0	0	0	0	7
29	2	1	0	0	0	0	32
5	1	0	0	0	0	0	6
9	2	1	0	0	0	0	12
12	1	0	0	0	0	0	13
13	2	0	0	0	0	1	16
39	6	1	0	0	0	1	47
14	1	0	0	0	0	2	17
16	1	0	0	0	0	0	17
3	1	0	0	0	0	0	4
10	1	0	0	0	0	0	11
43	4	0	0	0	0	2	49
5	3	0	0	0	0	0	8
11	0	0	0	0	0	0	11
8	1	0	0	0	0	0	9
4	0	0	0	0	0	0	4
28	4	0	0	0	0	0	32
7	0	0	0	0	0	0	7
7	1	0	0	0	0	0	8
2	0	0	0	0	0	0	2
8	0	0	0	0	0	0	8
24	1	0	0	0	0	0	25
5	2	0	0	0	0	1	8
4	1	0	0	0	0	0	5
6	0	0	0	0	0	0	6
1	0	0	0	0	0	0	1
16	3	0	0	0	0	1	20
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

(Return To Dashboard

23:45	4	0	0	0	0	0	0		4
1 Hr	14	1	0	0	0	0	0		15
Total	414	67	14	18	0	0	14	52	

Total	414	67	14	18	0	0	14	529

ORIGIN SUMMARYOrigin : Arm A Marrsfield Avenue(E)								Total
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	0
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
01:00	1	0	0	0	0	0	0	1
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	1	0	0	0	0	0	0	1
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	0
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
05:00	1	0	0	0	0	0	0	1
05:15	1	0	0	0	0	0	0	1
05:30	0	0	0	0	0	0	0	0
05:45	3	0	0	0	0	0	0	3
1 Hr	5	0	0	0	0	0	0	5
06:00	8	0	0	0	0	0	0	8
06:15	4	2	0	0	0	0	1	7
06:30	4	0	0	0	0	0	1	5
06:45	3	1	0	0	0	0	2	6
1 Hr	19	3	0	0	0	0	4	26
07:00	9	0	0	0	0	0	0	9
07:15	11	2	0	1	0	0	0	14
07:30	12	1	0	0	0	0	0	13

Origin:	Arm B	Park Avenue		Total		
Car	LGV	OGV1	OGV2		MC	PC

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
4	0	0	0	0	0	0	4
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
2	1	0	0	0	0	0	3
4	1	0	0	0	0	0	5
4	0	0	0	0	0	0	4
4	2	0	0	0	0	0	6
11	0	0	0	0	0	0	11

Origin :	Arm C		Marrsfield Avenue(WNW)		Total		
Car	LGV	OGV1	OGV2	PSV		PC	

Origin

2	0	0	0	0	0	1	3
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1
3	0	0	0	0	0	2	5
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	1	1
4	5	0	0	0	0	0	9
8	4	0	0	0	0	0	12
13	9	0	0	0	0	1	23
4	5	0	1	0	0	0	10
14	5	0	0	0	0	0	19
14	1	0	1	0	0	1	17

(Return To Dashboard

07:45	12	1	0	1	0	0	0	14
1 Hr	44	4	0	2	0	0	0	50
18:00	13	3	0	0	0	0	3	19
08:15	8	0	1	0	0	0	0	9
08:30	11	1	0	1	0	0	0	13
08:45	10	0	0	2	0	1	0	13
1 Hr	42	4	1	3	0	1	3	54
09:00	6	0	1	0	0	0	0	7
09:15	5	0	0	1	0	0	0	6
09:30	5	1	1	1	0	0	0	8
09:45	10	1	0	1	0	0	1	13
1 Hr	26	2	2	3	0	0	1	34
10:00	3	4	0	0	0	0	0	7
10:15	4	0	1	0	0	0	0	5
10:30	2	1	0	1	0	0	0	4
10:45	3	2	2	0	0	0	0	7
1 Hr	12	7	3	1	0	0	0	23
11:00	3	0	0	2	0	0	0	5
11:15	6	1	1	0	0	0	0	8
11:30	5	2	2	0	0	0	0	9
11:45	5	3	1	1	0	0	0	10
1 Hr	19	6	4	3	0	0	0	32
12:00	8	0	0	0	0	0	0	8
12:15	7	1	1	1	0	0	1	11
12:30	9	0	1	0	0	0	0	10
12:45	3	1	0	0	0	0	0	4
1 Hr	27	2	2	1	0	0	1	33
13:00	7	1	0	0	0	0	0	8
13:15	5	1	0	0	0	0	0	6
13:30	5	1	0	0	0	0	0	6
13:45	12	1	0	0	0	0	2	15
1 Hr	29	4	0	0	0	0	2	35
14:00	2	0	0	1	0	0	0	3
14:15	8	0	1	0	0	0	0	9
14:30	8	3	0	1	0	0	0	12
14:45	3	1	1	1	0	0	0	6
1 Hr	21	4	2	3	0	0	0	30
15:00	5	2	2	0	0	0	0	9
15:15	7	1	1	0	0	0	0	9
15:30	8	1	0	0	0	0	0	9
15:45	16	1	0	1	0	0	0	18
1 Hr	36	5	3	1	0	0	0	45
16:00	16	4	0	0	0	0	0	20
16:15	6	7	0	1	0	0	1	15
16:30	12	7	0	0	0	0	0	19
16:45	8	3	0	0	0	0	0	11
1 Hr	42	21	0	1	0	0	1	65

5	2	0	0	0	0	0	7
24	4	0	0	0	0	0	28
11	1	0	0	0	1	1	14
19	0	0	0	0	0	0	19
30	0	0	0	0	0	0	30
12	0	0	0	0	0	0	12
72	1	0	0	0	1	1	75
5	1	0	0	0	0	0	6
13	0	0	0	0	0	0	13
5	0	0	0	0	0	0	5
1	0	0	0	0	0	0	1
24	1	0	0	0	0	0	25
4	2	0	0	0	0	0	6
2	0	0	0	0	0	1	3
5	0	0	0	0	0	0	5
7	0	0	0	0	0	0	7
18	2	0	0	0	0	1	21
4	1	0	0	0	0	0	5
4	3	0	0	0	0	0	7
4	0	1	0	0	0	0	5
4	0	0	0	0	0	0	4
16	4	1	0	0	0	0	21
8	2	0	0	0	0	0	10
1	0	0	0	0	0	0	1
4	1	0	0	0	0	0	5
10	1	0	0	0	0	0	11
23	4	0	0	0	0	0	27
3	0	0	0	0	0	0	3
7	0	0	0	0	0	0	7
2	1	0	0	0	0	0	3
4	1	1	0	0	0	0	6
16	2	1	0	0	0	0	19
11	2	0	0	0	0	0	13
17	0	1	0	0	0	0	18
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	5
38	2	1	0	0	0	0	41
6	1	0	0	0	0	0	7
11	0	1	0	0	0	0	12
3	0	0	0	0	0	1	4
7	2	0	0	0	0	3	12
27	3	1	0	0	0	4	35
9	0	0	0	0	0	0	9
4	1	1	0	0	0	0	6
2	0	0	0	0	0	0	2
6	1	0	0	0	0	0	7
21	2	1	0	0	0	0	24

10	2	2	0	0	0	0	14
42	13	2	2	0	0	1	60
14	3	0	1	0	0	0	18
12	1	0	1	0	0	2	16
12	1	0	1	0	0	0	14
16	0	1	0	0	0	0	17
54	5	1	3	0	0	2	65
15	1	1	1	0	0	0	18
7	1	0	1	0	0	0	9
5	1	0	1	0	0	0	7
7	3	0	0	0	0	0	10
34	6	1	3	0	0	0	44
3	1	1	1	0	0	0	6
7	3	1	0	0	0	0	11
2	2	0	1	0	0	0	5
7	0	1	1	0	0	0	9
19	6	3	3	0	0	0	31
6	4	0	1	0	0	1	12
8	3	2	0	0	0	0	13
7	0	1	1	0	0	0	9
5	3	0	0	0	0	1	9
26	10	3	2	0	0	2	43
10	0	0	1	0	0	0	11
8	4	1	0	0	0	0	13
3	2	0	0	0	1	0	6
7	3	0	0	0	0	0	10
28	9	1	1	0	1	0	40
7	1	1	0	0	0	0	9
13	3	0	0	0	0	0	16
12	0	0	1	0	0	1	14
10	2	0	0	0	0	0	12
42	6	1	1	0	0	1	51
10	0	0	1	0	0	0	11
6	4	1	1	0	0	0	12
32	4	0	0	0	0	0	36
12	0	1	1	0	0	0	14
60	8	2	3	0	0	0	73
9	0	1	1	0	0	0	11
10	1	0	0	0	0	1	12
12	1	0	1	0	0	0	14
13	2	0	0	0	0	0	15
44	4	1	2	0	0	1	52
25	0	2	0	0	0	0	27
13	1	0	0	0	0	0	14
13	2	0	0	0	0	0	15
16	5	0	0	0	0	0	21
67	8	2	0	0	0	0	77

$17: 00$	15	1	0	0	0	0	0	16
$17: 15$	9	0	0	0	0	0	0	9
$17: 30$	10	1	0	0	0	0	0	11
$17: 45$	13	2	0	0	0	0	0	15
1 Hr	47	4	0	0	0	0	0	51
$18: 00$	7	2	0	0	0	0	2	11
$18: 15$	4	2	0	0	0	0	1	7
$18: 30$	7	1	0	0	0	0	0	8
$18: 45$	10	0	0	0	0	0	0	10
1 Hr	28	5	0	0	0	0	3	36
$19: 00$	9	1	0	0	0	0	0	10
$19: 15$	10	0	0	0	0	0	1	11
$19: 30$	9	1	0	0	0	0	0	10
$19: 45$	12	0	0	0	0	0	0	12
1 Hr	40	2	0	0	0	0	1	43
$20: 00$	5	0	0	0	0	0	0	5
$20: 15$	6	0	0	0	0	0	0	6
$20: 30$	4	0	0	0	0	0	0	4
$20: 45$	5	0	0	0	0	0	0	5
1 Hr	20	0	0	0	0	0	0	20
$21: 00$	5	0	0	0	0	0	0	5
$21: 15$	2	0	0	0	0	0	0	2
$21: 30$	6	1	0	0	0	0	0	7
$21: 45$	2	0	0	0	0	0	1	3
1 Hr	15	1	0	0	0	0	1	17
$22: 00$	2	0	0	0	0	0	0	2
$22: 15$	6	1	0	0	0	0	0	7
$22: 30$	3	0	0	0	0	0	0	3
$22: 45$	0	0	0	0	0	0	0	0
1 Hr	11	1	0	0	0	0	0	12
$23: 00$	0	0	0	0	0	0	0	0
$23: 15$	1	0	0	0	0	0	0	1
$23: 30$	4	0	0	0	0	0	0	4
$23: 45$	1	0	0	0	0	0	0	1
1 Hr	6	0	0	0	0	0	0	6
Total	490	75	17	18	0	1	17	618

DESTINATION SUMMARY

Destination:	Arm A	Marrsfield	Avenue(ESE)		Total	
Car	LGV	OGV1	OGV2	PSV		PC

$00: 00$	1	0	0	0	0	0	1	2
$00: 15$	0	0	0	0	0	0	0	0
$00: 30$	1	0	0	0	0	0	0	1
$00: 45$	0	0	0	0	0	0	1	1
1 Hr	2	0	0	0	0	0	2	4

Destination:	Arm B	Park Avenue		Total		
Car	LGV	OGV1	OGV2		MC	PC

4
0
1
1
6

(Return To Dashboard

$01: 00$	0	0	0	0	0	0	0	0
$01: 15$	1	0	0	0	0	0	0	1
$01: 30$	1	0	0	0	0	0	0	1
$01: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$02: 00$	1	0	0	0	0	0	0	1
$02: 15$	1	0	0	0	0	0	0	1
$02: 30$	0	0	0	0	0	0	0	0
$02: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$03: 00$	1	0	0	0	0	0	0	1
$03: 15$	1	0	0	0	0	0	0	1
$03: 30$	0	0	0	0	0	0	0	0
$03: 45$	0	0	0	0	0	0	0	0
1 Hr	2	0	0	0	0	0	0	2
$04: 00$	0	0	0	0	0	0	0	0
$04: 15$	0	0	0	0	0	0	0	0
$04: 30$	0	0	0	0	0	0	0	0
$04: 45$	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	0
$05: 00$	1	0	0	0	0	0	0	1
$05: 15$	0	0	0	0	0	0	0	0
$05: 30$	0	0	0	0	0	0	0	0
$05: 45$	1	0	0	0	0	0	0	1
1 Hr	2	0	0	0	0	0	0	2
$06: 00$	1	0	0	0	0	0	0	1
$06: 15$	0	0	0	0	0	0	0	0
$06: 30$	4	5	0	0	0	0	0	9
$06: 45$	6	4	0	0	0	0	0	10
1 Hr	11	9	0	0	0	0	0	20
$07: 00$	2	4	0	1	0	0	0	7
$07: 15$	13	6	0	0	0	0	0	19
$07: 30$	8	1	0	1	0	0	0	10
$07: 45$	7	2	2	0	0	0	0	11
1 Hr	30	13	2	2	0	0	0	47
$08: 00$	8	2	0	1	0	0	0	11
$08: 15$	4	1	0	1	0	0	0	6
$08: 30$	7	1	0	1	0	0	0	9
$08: 45$	4	0	1	0	0	0	0	5
1 Hr	23	4	1	3	0	0	0	31
$09: 00$	5	1	0	1	0	0	0	7
$09: 15$	7	1	0	1	0	0	0	9
$09: 30$	4	1	0	1	0	0	0	6
$09: 45$	3	1	0	0	0	0	0	4
1 Hr	19	4	0	3	0	0	0	26
$10: 00$	3	1	1	1	0	0	0	6
$10: 15$	4	2	1	0	0	0	1	8

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	1
2	0	0	0	0	0	0	2
2	0	0	0	0	0	2	4
2	1	0	0	0	0	0	3
1	0	0	0	0	0	0	1
7	0	0	0	0	0	1	8
3	0	0	0	0	0	0	3
13	1	0	0	0	0	1	15
7	1	0	0	0	0	0	8
9	0	0	0	0	0	2	11
8	0	0	0	0	0	0	8
12	0	0	0	0	0	0	12
36	1	0	0	0	0	2	39
10	1	1	0	0	0	0	12
6	0	0	0	0	0	0	6
3	0	0	0	0	0	0	3
8	2	0	0	0	0	0	10
27	3	1	0	0	0	0	31
1	1	0	0	0	0	0	2
5	1	0	0	0	0	0	6

1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	0	0	0	0	0	0	2
0	0	0	0	0	0	0	0
5	0	0	0	0	0	0	5
8	0	0	0	0	0	0	8
9	0	0	0	0	0	0	9
4	2	0	0	0	0	1	7
5	0	0	0	0	0	0	5
5	2	0	0	0	0	2	9
23	4	0	0	0	0	3	30
13	0	0	0	0	0	0	13
15	3	0	1	0	0	0	19
22	1	0	0	0	0	0	23
17	3	0	1	0	0	0	21
67	7	0	2	0	0	0	76
23	4	0	0	0	1	4	32
26	0	1	0	0	0	0	27
38	1	0	1	0	0	0	40
22	0	0	2	0	1	0	25
109	5	1	3	0	2	4	124
11	0	1	0	0	0	0	12
12	0	0	1	0	0	0	13
8	1	1	1	0	0	0	11
7	1	0	1	0	0	1	10
38	2	2	3	0	0	1	46
6	5	0	0	0	0	0	11
4	0	1	0	0	0	0	5

$10: 30$	0	2	0	1	0	0	0	3
$10: 45$	5	0	1	1	0	0	0	7
1 Hr	12	5	3	3	0	0	1	24
$11: 00$	5	1	0	1	0	0	1	8
$11: 15$	7	6	2	0	0	0	0	15
$11: 30$	4	0	1	1	0	0	0	6
$11: 45$	2	1	0	0	0	0	1	4
1 Hr	18	8	3	2	0	0	2	33
$12: 00$	6	0	0	1	0	0	0	7
$12: 15$	4	3	1	0	0	0	0	8
$12: 30$	3	1	0	0	0	0	0	4
$12: 45$	8	3	0	0	0	0	0	11
1 Hr	21	7	1	1	0	0	0	30
$13: 00$	2	1	1	0	0	0	0	4
$13: 15$	9	2	0	0	0	0	0	11
$13: 30$	9	0	0	1	0	0	1	11
$13: 45$	7	2	0	0	0	0	0	9
1 Hr	27	5	1	1	0	0	1	35
$14: 00$	10	2	0	1	0	0	0	13
$14: 15$	8	1	1	1	0	0	0	11
$14: 30$	17	1	0	0	0	0	0	18
$14: 45$	9	0	1	1	0	0	0	11
1 Hr	44	4	2	3	0	0	0	53
$15: 00$	7	0	0	1	0	0	0	8
$15: 15$	4	1	0	0	0	0	0	5
$15: 30$	7	0	0	1	0	0	0	8
$15: 45$	7	1	0	0	0	0	2	10
1 Hr	25	2	0	2	0	0	2	31
$16: 00$	13	0	1	0	0	0	0	14
$16: 15$	7	1	0	0	0	0	0	8
$16: 30$	9	2	0	0	0	0	0	11
$16: 45$	12	3	0	0	0	0	0	15
1 Hr	41	6	1	0	0	0	0	48
$17: 00$	10	2	0	0	0	0	1	13
$17: 15$	12	0	0	0	0	0	1	13
$17: 30$	9	2	0	0	0	0	0	11
$17: 45$	11	0	0	0	0	0	3	14
1 Hr	42	4	0	0	0	0	5	51
$18: 00$	9	1	0	0	0	0	0	10
$18: 15$	15	0	0	0	0	0	0	15
$18: 30$	8	2	0	0	0	0	0	10
18	10	0	0	0	0	0	0	10
$18: 45$	10	0	0	0	0	0	0	0

2	0	0	0	0	0	0	2
4	0	0	0	0	0	0	4
12	2	0	0	0	0	0	14
3	3	0	0	0	0	0	6
4	0	0	0	0	0	0	4
4	0	0	0	0	0	0	4
3	3	0	0	0	0	0	6
14	6	0	0	0	0	0	20
5	0	0	0	0	0	0	5
6	1	0	0	0	0	0	7
1	2	0	0	0	1	0	4
3	0	0	0	0	0	0	3
15	3	0	0	0	1	0	19
8	0	0	0	0	0	0	8
6	1	0	0	0	0	0	7
7	0	0	0	0	0	0	7
6	1	0	0	0	0	2	9
27	2	0	0	0	0	2	31
2	0	0	0	0	0	0	2
3	3	0	0	0	0	0	6
18	3	0	0	0	0	0	21
5	0	0	0	0	0	0	5
28	6	0	0	0	0	0	34
7	1	1	0	0	0	0	9
10	0	0	0	0	0	1	11
6	1	0	0	0	0	0	7
6	1	0	0	0	0	0	7
29	3	1	0	0	0	1	34
14	0	1	0	0	0	0	15
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	5
6	2	0	0	0	0	0	8
30	2	1	0	0	0	0	33
6	1	0	0	0	0	0	7
9	2	1	0	0	0	0	12
14	1	0	0	0	0	0	15
14	2	0	0	0	0	1	17
43	6	1	0	0	0	1	51
15	1	0	0	0	0	4	20
18	1	0	0	0	0	0	19
4	1	0	0	0	0	0	5
11	1	0	0	0	0	0	12
48	4	0	0	0	0	4	56
6	3	0	0	0	0	0	9
15	0	0	0	0	0	1	16
10	1	0	0	0	0	0	11
6	0	0	0	0	0	0	6

7	1	0	1	0	0	0	9
8	2	2	0	0	0	0	12
25	8	3	1	0	0	0	37
5	1	0	2	0	0	0	8
7	1	1	0	0	0	0	9
8	2	3	0	0	0	0	13
9	2	1	1	0	0	0	13
29	6	5	3	0	0	0	43
15	2	0	0	0	0	0	17
6	1	1	1	0	0	1	10
12	0	1	0	0	0	0	13
9	2	0	0	0	0	0	11
42	5	2	1	0	0	1	51
7	1	0	0	0	0	0	8
10	1	0	0	0	0	0	11
3	2	0	0	0	0	0	5
13	1	1	0	0	0	0	15
33	5	1	0	0	0	0	39
11	0	0	1	0	0	0	12
20	0	2	0	0	0	0	22
10	3	0	1	0	0	0	14
6	1	1	1	0	0	0	9
47	4	3	3	0	0	0	57
6	2	2	0	0	0	0	10
14	1	2	0	0	0	0	17
10	1	0	0	0	0	1	12
23	3	0	1	0	0	1	28
53	7	4	1	0	0	2	67
23	4	0	0	0	0	0	27
11	8	1	1	0	0	1	22
13	7	0	0	0	0	0	20
12	4	0	0	0	0	0	16
59	23	1	1	0	0	1	85
15	1	0	0	0	0	0	16
12	1	0	0	0	0	0	13
15	1	0	0	0	0	0	16
29	5	0	0	0	0	0	34
71	8	0	0	0	0	0	79
13	2	0	0	0	0	0	15
12	2	0	0	0	0	1	15
9	1	0	0	0	0	0	10
19	0	0	0	0	0	1	20
53	5	0	0	0	0	2	60
10	1	0	0	0	0	0	11
9	0	0	0	0	0	0	9
10	1	0	0	0	0	0	11
16	0	0	0	0	0	0	16
10							

1 Hr	41	0	0	0	0	0	1	42
$20: 00$	9	1	0	0	0	0	0	10
$20: 15$	12	0	0	0	0	0	1	13
$20: 30$	9	0	0	0	0	0	2	11
$20: 45$	4	0	0	0	0	0	1	5
1 Hr	34	1	0	0	0	0	4	39
$21: 00$	8	0	0	0	0	0	0	8
$21: 15$	7	1	0	0	0	0	0	8
$21: 30$	11	0	0	0	0	0	0	11
$21: 45$	11	0	0	0	0	0	0	11
1 Hr	37	1	0	0	0	0	0	38
$22: 00$	10	1	0	0	0	1	0	12
$22: 15$	4	1	0	0	0	0	0	5
$22: 30$	3	0	0	0	0	0	2	5
$22: 45$	4	0	0	0	0	0	0	4
1 Hr	21	2	0	0	0	1	2	26
$23: 00$	1	0	0	0	0	0	0	1
$23: 15$	10	1	0	0	0	0	0	11
$23: 30$	4	0	0	0	0	0	0	4
$23: 45$	4	0	0	0	0	0	0	4
1 Hr	19	1	0	0	0	0	0	20

37	4	0	0	0	0	1	42
8	0	0	0	0	0	0	8
8	1	0	0	0	0	0	9
4	0	0	0	0	0	0	4
9	0	0	0	0	0	0	9
29	1	0	0	0	0	0	30
6	2	0	0	0	0	1	9
4	1	0	0	0	0	0	5
7	0	0	0	0	0	0	7
2	0	0	0	0	0	1	3
19	3	0	0	0	0	2	24
2	0	0	0	0	0	0	2
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
7	0	0	0	0	0	0	7
0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
5	0	0	0	0	0	0	5
425	47	4	0	0	1	16	493

45	2	0	0	0	0	0	47
11	0	0	0	0	0	0	11
9	0	0	0	0	0	0	9
3	0	0	0	0	0	0	3
8	1	0	0	0	0	0	9
31	1	0	0	0	0	0	32
9	0	0	0	0	0	1	10
4	0	0	0	0	0	0	4
6	1	0	0	0	0	0	7
2	0	0	0	0	0	0	2
21	1	0	0	0	0	1	23
2	0	0	0	0	0	0	2
6	1	0	0	0	0	0	7
2	0	0	0	0	0	0	2
1	0	0	0	0	0	0	1
11	1	0	0	0	0	0	12
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	6
1	0	0	0	0	0	0	1
7	0	0	0	0	0	0	7
776	94	22	18	0	2	15	927

131 29 31 18 23 101 27 17 25 16 85 16 15 8 6 45 1 14 11 62 32 2071

SITE 5

Origin Arm A Hole in The Wall Road(NNW)

	Destin	on:	Arm A		Wall	din		
	Car	LGV	OGV1	OGV2	PSV	MC		Total
00:00	0	0	0	0	0	0	0	0
00:15	0	0	0	0	0	0	0	
00:30	0	0	0	0	0	0	0	0
00:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	
01:00	0	0	0	0	0	0	0	0
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	
01:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	
02:45	0	0	0	0	0	0	0	
1 Hr	0	0		0	0	,	0	0
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	
03:30	0	0	0	0	0	0	0	
03:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	0
04:00	0	0	0	0	0	0	0	
04:15	0	0	0	0	0	0		0
04:30	0	0	0	0	0	0	0	0
04:45	0	0	0	0	0	0		
1 Hr	0	0	0	0	0	0	,	
05:00	0	0	0	0	0	0	0	0
05:15	0	0	0	0	0	0		
05:30	0	0	0	0	0	0	0	0
05:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	
06:00	0	0	0	0	0	0		0
06:15	0	0	0	0	0	0	0	0
06:30	0	0	0	0	0	-	0	
06:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	
07:00	0	0	0	0	0	0	0	
07:15	0	0	0	0	0	0	0	0
07:30	0	0	0	0	0	0	0	
07:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	0
08:00	0	0	0	0	0	0	0	
08:15	0	0	0	0	0	0	0	0
08:30	0	0	0	0	0	0	0	0
08:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	
09:00	0	0		0	0	0		0
09:15	1	0	0	0	0	0	0	
09:30	1	0	0	0		0	,	
09:45	0	0	0	0	0	0	0	
1 Hr	2	0	0	0	0	0	0	2
10:00	0	0	0	0	0	0	0	
10:15	0	0	0	0	0	0	0	0
10:30	0	0	0	0	0	0	0	0
10:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	0
11:00	0	0	0	0	0	0	0	
11:15	0	0	0	0	0	0	0	0
11:30	0	0	0	0	0	0	0	0
11:45	0	0	0	0	0	0	0	

Destination: Arm D Main Street(W)							
Car	LGV	OGV1	OGV2	PSV	MC	PC	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0		
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0		
0	0	0	0	0	0	0	
0	0	,	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	-	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
1	0	0	0	0	0	0	
0	0	0	0	0	0	0	
2	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0		0	0	
1	0	0	0	-	0	0	
0	0	0	0	0	0	0	
1	0	0	0	,	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0		0	
1	0	0	0	0	0	0	
1	0	0	0			0	
2	0	0		0	0	0	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
1	0			0	0	0	
0	0	0	0	0	0	0	

Arm
Totals

| Total | 4 | 0 | 0 | 0 | 0 | 0 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Origin Arm B Main Street(E)

716	63	4	0	1	2	3	789

2717	245	47	5	11	7	29	3061

25	1	1	0	0	0	0	27

3881

Arm
Totals

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0		0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	\bigcirc	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	,	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0		0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	,	0
0	0	0		0	0	0	0
0	0	0	0	0	0	0	0
0		0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	,	0
0		0		0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0		0	0	0
0	0	0	0	0	0	0	0
0	0	0		0		0	0
0	0	0	0	0	0	,	0
0	0	0	0	0	0	O	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0

$\begin{array}{|ccccccc|}0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$

	stination		Arm A	Hole in T	Wall	ad(NN		Tota
	Car	LGV	OGV1	OGV2	PSV	MC	PC	
00:00	1	0	0	0	0	0	0	1
00:15	1	0	0	0	0	0	0	
00:30	1	0	0	0	0	0	0	
00:45	0	0	0	0	0	0	0	
1 Hr	3	0	0	0	0	0	0	3
01:00	0	0	0	0	0	0	0	
01:15	0	0	0	0	0	0	0	0
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	-	0
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	0
02:30	0	0	0	0	0	0	0	
02:45	0	0	0	0	0	0	0	0
1 Hr	0	0	0	0	0	0	0	
03:00	0	0	0	0	0	0	0	0
03:15	0	0	0	0	0	0	0	0
03:30	0	0	0	0	0	0	0	0
03:45	0	0	0	0	0	0	,	
1 Hr	0	0	0	0	0	0	0	0
04:00	1	0	0	0	0	0	0	1
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	1	0	1
04:45	1	0	0	0	0	0	0	
1 Hr	2	0	0	0	0	1	0	3
05:00	0	0	0	0	0	0	0	0
05:15	1	1	0	0	0	0	0	2
05:30	2	1	0	0	0	0		3
05:45	2	0	0	0	0	0	0	
1 Hr	5	2	0	0	0	0	0	
06:00	3	0	0	0	0	0	0	3
06:15	0	0	0	0	0	0	0	0
06:30	2	1	0	0	0	0	0	3
06:45	6	0	0	0	0	0	0	
1 Hr	11	1	0	0	0	0	0	12
07:00	7	1	0	0	0	0		
07:15	9	1	0	0	0	0		10
07:30	14	2	0	0	0	0	0	16
07:45	18	2	0	0	0	1	0	21
1 Hr	48	,	0	0	0		1	56
08:00	27	3	0	0	0	0	1	31
08:15	24	3	0	0	0	0	0	27
08:30	20	1	0	-	0	0	0	21
08:45	11	1	0	1	0	0	0	13
1 Hr	82	8	0	1	0	0	1	92
09:00	6		0		0		0	8
09:15	7	0	0	0	0	0	0	7
09:30	5	1	0	0	0	0	0	6
09:45	5	1	0	0	0		0	
1 Hr	23	4	0	0	0	0	0	27
10:00	3	0	0	0	0	0	0	3
10:15	9	0	0	0	0	0	0	9
10:30	6	1	0	0	0	0	0	7
10:45	4	1	1	-	0	-	0	6
1 Hr	22	2	1	0	,	0	0	25
11:00	1	1	1	0	0	0	,	3
11:15	6	0	0	0	0	0	0	6
11:30	7	0	0		0		0	7
11:45	4	1	0	0	0	0	0	
1 Hr	18	2	1	0	0	0		21
12:00	3	1	0	0	0	0		

12:15	9	0	0	0	0	0		9
12:30	4	1	0	0	0	0	0	5
12:45	5	2	0	0	0	0	0	
1 Hr	21	4	0	0	0	0	0	25
13:00	5	0	0	0	0	0	0	5
13:15	8	1	0	0	0	0	0	9
13:30	2	0	0	0	0	0	0	
13:45	9	1	0	0	0	0	0	10
1 Hr	24	2	0	0	0	0	0	26
14:00	5	2	0	0	0	0	0	7
14:15	13	1	0	1	0	0	0	15
14:30	3	0	0	0	0	0	0	3
14:45	9	1	0	0	0	0	0	10
1 Hr	30	4	0	1	0	0	0	35
15:00	5	0	0	0	0	0	0	5
15:15	3	0	0	0	0	0	0	3
15:30	5	1	1	0	0	0	0	7
15:45	13	1	0	0	0	0	0	14
1 Hr	26	2		0	0	0	0	29
16:00	14	2	0	0	0	1	-	17
16:15	15	2	0	0	0	0	0	17
16:30	11	1	0	0	0	0	0	12
16:45	16	1	0	0	0	0	0	17
1 Hr	56	6	0	0	0	1	0	63
17:00	21	2	0	0	0	0	0	23
17:15	20	2	0	1	0	0	0	23
17:30	13	0	1	0	0	0	0	14
17:45	40	4		0	0	1	0	45
1 Hr	94	8	1	1	0	1	0	105
18:00	20	0	0	0	0	0	0	20
18:15	46	2	0	0	0	0	1	49
18:30	15	1	0	0	0	0	0	16
18:45	13	0	0	0	0	0	0	13
1 Hr	94	3	0	0	0	0	1	98
19:00	${ }^{23}$	1	0	0	0	0	0	24
19:15	11	0	0	0	0	0	0	11
19:30	9	1	0	0	0	0	0	10
19:45	10	1	0	0	0	0	0	11
1 Hr	53	3	0	0	0	0	0	56
20:00	14	1		0	0	0	0	15
20:15	3	0	0	0	0	0	0	3
20:30	7	0	0	0	0	0	0	
20:45	4	1	0	0	0	0	0	
1 Hr	28	2	0	0	0	0	0	30
21:00	4	0	0	0	0	0	0	
21:15	7	0	0	0	0	0	0	7
21:30	3	0		0	0	0	0	3
21:45	3	1	0	0	0	0	,	4
1 Hr	17	1	0	0	0	0	0	18
22:00	2	0	0	0	0	0	0	2
22:15	4	0	0	0	0	0	0	4
22:30	6	0	0	0	0	0	0	6
22:45	0	0	0	0	0	0	0	0
1 Hr	12	0	0	0	0	0	0	12
23:00	2	0	0	0	0	0	0	2
23:15	1	0	0	0	0	0	0	1
23:30	3	0	0	0	0	0	0	3
23:45	2	0	0	0	0	0	0	
1 Hr	8	0	0	0	0	0	0	8
Total	677	60	4	3	0	4	3	751

Origin Arm C Hole in The Wall Road(S)
Destination: Arm A Hole in The Wall Road(NNW) $T_{\text {Tntal }}$

Destination: Arm B Main Street(E) $]_{\text {Total }}$

Destination: Arm C Hole in The Wall Road(S)

Destination: Arm D Main Street(W)

Arm

11	1	0		0	0		${ }^{13}$
12	0	0	0	0	0	0	12
8	0	0	0	0	0	0	
10	0	0	0	0	0	1	11
41	1	0		0	0	2	44
6	0	0	0	0	0	0	
5	0	0	0	0	0	0	5
3	0	0	0	0	0	0	
5	0	0	0	0		0	
19	0	0	0	0	0	0	19
2	0	0	0	0	0	0	
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
2	0	0	0	0		0	
8	0	0	0	0	0	0	
1	1	0	0	0	0	0	
1	0	0	0	0	0		
1	0	0	0	0	0	0	
1	0	0	0	0	0	0	
4	1	0	0	0	0	0	
3	0	0	0	0	0	0	
5	1	0	0	0	0	0	6
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
15	1	0	0	0	0	0	16
0	0	0	0	0	0	0	
2	1	0	0	0	0	0	3
3	0	0	0	0	0	0	
6	0	0	0	2	0	0	
11	1	0	0	2	0	0	14
6	0	0	0	1	0	0	
20	3	0	0	3		2	28
13	2	0	0	2	1	0	18
26	5	0	0	1	0	0	
65	10	0	0	7	1	2	85
14	6	0	0	3	0	0	23
22	2	0	0	3	0	0	27
27	2	2	0	2	0	0	33
17	3	0	0	3	0	0	23
80	13	2	0	11		0	106
${ }^{21}$	3	0	0	1		0	25
17	1	0	0	2	0	0	20
21	2	0	0	0	0	0	23
33	5	0	2	2	0	0	42
92	11	0	2	5	0	0	110
50	0	0	0	1	0	0	51
49	8	0	0	2		0	59
29	1	0	0	2	1	0	
26	5	0	0	2	-	,	34
154	14	0		7	1	1	177
20	8	1	0		0	0	31
20	4	0	0	1		0	25
20	1	1	1	2	0	0	25
23	1	1	0	1	0	0	26
83	14	3		6	0	0	107
22	5	0	0	0	0	0	27
23	2		0	1	0	0	27
25	1	0	0	1		0	27
26	5	1	0	2	0	0	34
96	13	2	0	4	0	0	115
29		0	0	0	0	0	32
34	9		0		0		

| Total | 2746 | 255 | 54 | 6 | 8 | 11 | 31 | 3111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Origin Arm D Main Street(W)
Destination: Arm A Hole in The Wall Road(NNW)

4	0	0	0	0	0	0	4

Destination : Arm C Hole in The Wall Road(S)

Destination: Arm C	Hole in The Wall Road(S)		Total		
Car	LGV	OGV1	OGV2	PSV	MC

0	0	0		0	00	0	0
0	0	0	0	0	0	0	0
0	0	0		0	00	0	0
0	0	0	0	0	00	0	0
0	0	0		00	00	0	0
0	0	0		0	00	0	
0	0	0		0	0	0	0
0	0	0		0	00	0	0
0	0	0		0	00	0	0
0	0	0		00	00	0	0
0	0	0		0	0	0	
0	0	0		0	0 0	0	0
0	0	0		00	00	0	0
0	0	0		00	0	0	0
0	0	0		0	00	0	0
0	0	0		00	00	0	0
0	,	0		0	0	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		0	0	0	0
0	0	0		0	0	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	
0	0	0		00	00	0	0
0	0	0		0	0	0	
0	0	0		0	0	0	0
0	0	0		0	00	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		0	0	0	
	0	0		0	0 0	0	0
0	0	0		00	0 0	0	0
0	0	0		00	00	00	0
0	0	0		00	00	0	
0	0	0		0	00	0	0
0	0	0		0	0	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		0	0	0	0
0	0	0		00	00	0	0
0	0	0	0	00	00	0	0
0	0	0		00	00	0	0
0	0	0		0	00	0	0
0	0	0		0	0	0	0
0	0	0		00	0 0	0	0
0	0	0		00	00	0	0
0	0	0		00	00	0	0
0	0	0		0	0	0	0
0	0	0		0	0	0	0
0	0	0		00	0 0	0	0
0	0	0		00	00	0	0
0	0	0		00	0 0	0	0
0	0	0		0	0	0	0
0	0	0		0	0 0	0	0
1	0	0		0	0	0	1
Origin :		Arm D	Main Stre	Street(W)			Total
Car	LGV	OGV1	OGV2	2 PSV	V MC	C PC	

3650	291	19	13	99	15	10	4097

Destination : Arm B Main Street(E)

Destination : Arm D Main Street(W)

Destination: ArmD	Main Street(W)			
Car	LGV OGV1	OGVV	PSV	MC

0	0	0	0	0	0	0	0

00:15		0	0	0	0	0		
00:30	2	0	0	0	0	0	0	
00:45	3	0	0	0	0	0	0	
1 Hr	15	0	0	0	0	0	0	15
01:00	1	1	0	0	0	0	0	2
01:15	3	0	0	0	0	0	0	3
01:30	1	0	0	0	0	0	0	
01:45	0	0	0	0	0	0	0	
1 Hr	5	1	0	0	0	0	0	
02:00	1	0	0	0	0	0	0	1
02:15	1	0	0	0	0	0	0	
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	
1 Hr	2	0	0	0	0	0	0	2
03:00	1	0	0	0	0	0	0	
03:15	2	0	0	0	0	0	0	2
03:30	1	0	0	0	0	0	0	1
03:45	1	0	0	0	0	0	0	
1 Hr	5	0	0	0	0	0	0	5
04:00	3	0	0	0	0	0	0	
04:15	0	0	0	0	0	0	0	0
04:30	0	0	0	0	0	1	0	
04:45	2	0	0	0	0	0	0	
1 Hr	5	0	0	0	0	1	0	6
05:00	0	1	0	0	0	0	0	1
05:15	3	1	0	0	0	0	0	4
05:30	6	1	0	0	0	0	0	
05:45	6	0	0	0	0	0	0	
1 Hr	15	3	0	0	0	0	0	18
06:00	7	1	0	0	0	0	0	8
06:15	5	1	1	0	0	0	0	
06:30	9	1	1	0	0	0	0	11
06:45	17	1	0	0	1	0	1	20
1 Hr	38	4	2	0	1	0	1	46
07:00	24	2		0	0	1	1	28
07:15	29	5	2	0	1	1	1	39
07:30	58	4	3	1	0	0	0	66
07:45	60	6		0	0	1	1	69
1 Hr	171	17	6	1	1	3	3	202
08:00	70	7	0	0	0	0	3	80
08:15	100	6	0	0	0	1	0	107
08:30	61	6	0	0	0	0	1	68
08:45	52	4	1	2	1	0	0	60
1 Hr	283	23	,	2	1	1	4	315
09:00	47	3	2	0	0	0	0	52
09:15	50	5	1	0	0	0	1	57
09:30	43	6	2	0	0	0	0	51
09:45	31	3	0	0	0	0	0	34
1 Hr	171	17	5	0	0	0	1	194
10:00	41	6	2	0	0	0	0	49
10:15	39	8	2	0	0	0	1	50
10:30	40	5	3	0	0	0	1	49
10:45	44	8	4	0	0	0	0	56
1 Hr	164	27	11	0	0	0	2	204
11:00	23	4	1	0	0	0	0	28
11:15	50	6	,		0	1	0	58
11:30	44	8	1	0	0	0	0	53
11:45	43	5	,	0	0	1	1	51
1 Hr	160	23	4	0	0	2	1	190
12:00	37	5	3		0	1	0	${ }^{46}$
12:15	46	4	0	0	0	0	1	51
12:30	49	6	0	1	0	0	0	56
12:45	54	5	3	0	0	0	1	63

	0	0	0	0	0	0	
11	0	0	0	0	0	1	12
44	1	0	0	0	0	2	47
6	0	0	0	0	0	0	6
5	1	0	0	0	0	0	6
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	
21	1	0	0	0	0	0	22
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	2
2	0	0	0	0	0	0	
8	0	0	0	0	0	0	8
1	1	0	0	0	0	0	
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	
4	1	0	0	0	0	0	
3	0	0	0	0	0	0	
5	1	0	0	0	0	0	6
3	0	0	0	0	0	0	
4	0	0	0	0	0	0	
15	1	0	0	0	0	0	16
0	0	0	0	0	0	0	0
2	2	0	0	0	0	0	4
3	0	0	0	0	0	0	3
7	0	0	0	2	0	0	
12	2	0	0	2	0	0	16
6	0	0	0	1	0	0	
27	3	0	0	3	0	2	35
16	2	0	0	2	1	0	21
32	6	0	0	1	0	0	39
81	11	0	0	7	1	2	102
20	7	0	0	3	0	0	30
35	4	0	0	3	0	0	42
55	3	2	0	2	0	0	62
36	3	0	0	3	0	1	43
146	17	2	0	11	0	1	177
52	3	0	0	1	0	0	56
39	2	0	0	2	0	0	43
28	5	0	0	0	0	0	33
55	7	0	2	2	0	0	66
174	17	0	2	5	0	0	198
73	3	1	0	1	0	0	78
70	8	0	0	2	0	0	80
31	3	0	0	2	1	0	37
34	6	0	0	2	0	1	43
208	20	1	0	7	1	1	238
24	8	1	0	2	0	0	35
24	5	0	0	1	0	0	30
27	3	1	1	2	0	0	34
28	1	2	0	1	0	0	32
103	17	4	1	6	0	0	131
26	6	0	0	0	0	0	32
27	4	2	0	1	0	0	34
29	1	0	0	1	0	0	31
31	5	1	0	2	0	0	39
113	16	3	0	4	0	0	136
32	4	0	0	0	0	0	36
37	10	1	0	1	0	0	49
27	7	1	0	2	0	0	37
35	3	0	0	3	0	0	41

13:00	59	5	0	0	0	0		65
13:15	52	2	0	0	0	0	0	54
13:30	42	8	2	0	0	0	0	52
13:45	65	4	1	0	0	0	2	72
1 Hr	218	19	3	0	0	0	3	243
14:00	66	7	0	0	0	0	0	73
14:15	79	4	2	1	1	0	0	87
14:30	38	6	1	0	1	0	,	46
14:45	50	6	2	0	0	0	2	60
1 Hr	233	23	5	1	2	0	2	266
15:00	46	5	1	0	1	0	0	53
15:15	48	3	0	0	1	0	0	52
15:30	56	10	2	0	1	0	0	69
15:45	69	5	2	0	0	1	0	77
1 Hr	219	23	5	0	3	1	0	251
16:00	54	7	1	0	0	1	0	63
16:15	81	5	0	0	0	0	0	86
16:30	72	5	1	0	0	0	2	80
16:45	71	8	1	2	0	1	2	85
1 Hr	278	25	3	2	0	2	4	314
17:00	92	7	1	0	0	0	1	101
17:15	78	8	0	1	0	0	1	88
17:30	66	9	1		0	2	0	78
17:45	107	8	0	1	0	2	0	118
1 Hr	343	32	2	2	0	4	2	385
18:00	88	7	0	0	0	0	,	96
18:15	111	8	0	0	0	0	1	120
18:30	62	4	0	0	0	0	2	68
18:45	62	6	1	0	,	0	,	70
1 Hr	323	25	1	0	0	0	5	354
19:00	81		0	0	0	0	0	85
19:15	50	5	0		0	0	0	55
19:30	43	8	0	0	0	0	0	51
19:45	68	3	0	0	0	0	0	71
1 Hr	242	20	0	0	0	0	0	262
20:00	49	2	1	0	0	0	0	52
20:15	46	2	1	0	0	0	1	50
20:30	42	2	0	0	-	0	0	44
20:45	23	1	0	0	0		,	25
1 Hr	160	7	2	0	0	0	2	171
21:00	31	1	1	0	0	0	0	33
21:15	30	1	0	0	0	0	0	31
21:30	25	0	0	0	0	0	0	25
21:45	23	2	0		0		0	25
1 Hr	109	4	1	0	0	0	0	114
22:00	25	0	0	0		0	0	25
22:15	18	1	0	0	0	0	0	19
22:30	13	0	0	0	0	0	0	13
22:45	6	0	0	0	,	,	1	7
1 Hr	62	1	0	0	0	0	1	64
23:00	8	1	0	0	0	0	,	9
23:15	11	0	0	0	0	0	0	11
23:30	14	0	1	0	0	0	1	16
23:45	7	0	0	0	0	0	0	
1 Hr	40	1	1	0	0	0	1	43

Total	3447	315	58	9	8	15	34	3886

| 3637 | 322 | 19 | 6 | 106 | 17 | 30 | 4137 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

5758	480	62	15	110	18	41	6484

120	4	1	0	0	0	6	131

Origin Arm A Hole in The Wall Road | Destination: Arm A | Hole in The Wall Road | | Total | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Car | LGV | OGV1 | OGV2 | PSV | MC |

Destination: Arm

6	0	0	0		0		
5	0	0	0	0	0	0	5
5	0	0	0	0	0	0	
3	0	0	0	0		0	3
19	0	0	0	1	0	0	20
2	1	0	0	0	0	0	
3	0	0	0	0	0	0	3
1	0	0	0	0	0	0	1
0	1	0	0	0	0	0	
6	2	0	0	0	0	0	8
3	0	1	0	0	0	0	4
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	
3	0	0	0	0	0	0	
8	0	1	0	0	0	0	9
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
5	0	0	0	0	0	0	5
5	0	0	0	0	0		
10	0	0	0	0	0	0	10
1	0	0	0	0	0	0	
7	0	0	0	0	0	0	7
7	0	0	0	0	0	0	
5	0	0	0	0	0	0	
20	0	0	0	0	0	0	20
4	2	0	0	0	0	1	
14	0	0	0	0	0	0	14
7	0	0	0	0	0	1	
22	0	0	0	0	0	0	22
47	2	0	0	0	0	2	51
11	1	0	0	2	0	0	14
20	3	0	0	0	1	3	
17	13	0	0	1	0	2	
20	6	0	0	0	0	0	
68	23	0	0	3	1	5	100
37	4	0	0	0	3	2	46
42	5	2	0	0	0	2	51
34	5	1	0	3	0	0	43
57	5	0	0	0	0	1	
170	19	3	0	3	3	5	203
48	1	1	0	3	2	0	55
45	2	0	0	1	0	1	49
44	2	-	0	0	2	0	48
36	3	0	0	1	0	2	42
173	8	1	0	5	4	3	194
35	4	0	0	0	0	0	39
35	1	0	0	0	1	0	37
27	,	-	1	2	1	1	33
29	3	0	1	0	,	0	33
126	9	0	2	2	2	1	142
36	4	4	0	1	0	0	45
24	1	0	0	0	1	0	26
32	1	2	0	1	0	0	36
28		1	0	0	0	0	30
120	7	7	0	2	1	0	137
31	6	1	1	1	0	2	42
17	3	0	0	0	0	2	22
28	3	2	0	1	0	0	34
30	6	1	0	0	0		

Arm
Totals

3889	315	22	0	61	10	29	4326

	Destination: Arm A Hole in the Wall Road							
	Car	LGV	OGV1	OGV2	PSV	MC	PC)	
00:00	3	0	0	0	0	0	0	3
00:15	1	0	0	0	0	0	0	1
00:30	3	0	0	0	0	0	0	3
00:45	3	0	0	0	0	0	0	
1 Hr	10		0	0	0	0	0	10
01:00	0	0	0	0	0	0	0	0
01:15	1	0	0	0	0	0	0	1
01:30	0	0	0	0	0	0	0	0
01:45	0	0	0	0	0	0	0	0
1 Hr	1		0	0	0	0	0	
02:00	0	0	0	0	0	0	0	0
02:15	0	0	0	0	0	0	0	
02:30	0	0	0	0	0	0	0	0
02:45	0	0	0	0	0	0	0	
1 Hr	0	0	0	0	0	0	0	0
03:00	0	1	0	0	0	0	0	1
03:15	1	0	0	0	0	0	0	
03:30	1	0	0	0	0	0	0	
03:45	0	0	0	0	0	0		
1 Hr	2	1	0	0	0	0	0	
04:00	1	0	0	0	0	0	0	
04:15	2	0	0	0	0	0	0	2
04:30	0	0	0	0	0	0	0	
04:45	0	0	0	0	0	0	0	
1 Hr	3	0	0	0	0	0	0	3
05:00	0	1	0	0	0	0	0	
05:15	1	0	0	0	0	0	0	
05:30	2	0	0	0	0	0	0	2
05:45	1	0	0	0	0	0	0	
1 Hr	4	1	0	0	0	0	0	
06:00	0	1	0	0	0	0	0	
06:15	4	1	0	0	0	0	0	5
06:30	2	0	0	0	0	0	0	2
06:45	2	0	0	0	0	0	0	
1 Hr	8	2	0	0	0	0	0	10
07:00	4	1	0	0	0	0		
07:15	9	2	0	0	0	0	0	11
07:30	14	2	0	0	0	0	0	16
07:45	6	4	0	0	0	0	0	10
1 Hr	33	9	0	0	0	0	0	42
08:00	13	0	1	0	0	0	0	14
08:15	21	1	0	1	0	0	0	23
08:30	15	2	0	0	0	0	0	17
08:45	21	2	0	1	0	0	0	24
1 Hr	70	5	1	2	0	0	0	78
09:00	27	1	1	0	0	0	0	29
09:15	14	5	1	0	0	0	0	20
09:30	17	3	0	0	0	0	0	20
09:45	9	3	0	0	0	0	0	12
1 Hr	67	12	2	0	0		0	81
10:00	7	6	0	0	0	0	0	13
10:15	12		0	0	0	0	0	${ }^{13}$
10:30	14	2	1	0	0	0	0	17
10:45	11	0	0	0	0	0	0	11
1 Hr	44	9	1	0	0	0	0	54
11:00	14	4	0	0	0	0	0	18
11:15	16		1	0	0	1	0	21
11:30	13	5	1	0	0	0	0	19
11:45	10		0	0	0	0	0	13
1 Hr	53	15	2	0	0	1	0	71
12:00	21	9	0	0	0	0	0	30

Destination: Arm B R809(ESE)							Total
Car	LGV	OGV1	OGV2	PSV	MC	PC	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		
0	0	0	0	0	0	0	0
0	0	0	0	0	0		
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0		0	0	0	0	0
0	0		0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0		0
0	0	0	0	0	0	0	0
0	0	,	0	0	0	0	0
0	0	0	0	0	0	,	0
0	0	0	0	0	0		
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	-	-	0	0	0	0
0	0	0	0		0	,	0
0	0	0	0	0	0	,	0
0	0		0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0		0
0	0		0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	

Destination:	Arm C	R809(S)		
Car	LGV	OGV1	OGV2	PSV

0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	1
2	1	0	0	0	0	0	3
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	4
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	1
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
1	1	0	0	0	0	0	2
0	0	0	0	0	0	0	0
1	0	0	0	1	1	0	3
1	0	0	0	0	0	0	1
2	1	1	0	0	0	0	4
4	1	1	0	1	1	0	8
3	1	0	0	0	0	0	4
1	0	1	0	0	0	0	2
1	0	0	0	0	0	0	1
10	0	0	0	0	0	0	10
15	1	1	0	0	0	0	17
13	0	0	1	0	1	0	15
23	1	0	0	0	0	0	24
19	0	0	0	0	1	0	20
32	0	0	1	0	0	0	33
87	1	0	2	0	2	0	92
32	6	0	0	0	0	2	40
56	2	1	0	0	0	1	60
65	3	1	0	0	0	0	69
61	0	1	0	0	0	0	62
214	11	3	0	0	0	3	231
53	3	0	0	0	0	0	56
32	4	1	0	0	0	0	37
26	3	0	0	0	0	0	29
47	6	0	0	0	0	0	53
158	16	1	0	0	0	0	175
43	0	3	0	0	0	0	46
39	1	0	0	0	0	0	40
50	0	0	0	0	0	0	50
29	1	0	0	0	0	0	30
161	2	3	0	0	0	0	166
55	1	0	0	0	1	0	57
33	0	0	0	0	0	0	33
49	2	0	0	0	1	0	52
46	1	0	0	0	1	0	48
183	4	0	0	0	3	0	190
40	2	0	0	0	0	2	44
10							

37	0	0	0	0	1	0	38
22	0	0	0	1	0	0	23
10	0	1	0	0	0	0	11
5	1	0	0	0	0	0	6
74	1	1	0	1	1	0	78
5	1	1	0	0	0	0	7
8	1	0	0	0	0	0	9
6	0	0	0	0	0	0	6
5	0	0	0	0	0	0	5
24	2	1	0	0	0	0	27
0	0	1	0	0	0	0	1
1	1	0	0	0	0	0	2
3	1	0	0	0	0	0	4
1	0	0	0	0	0	0	
5	2	1	0	0	0	0	8
2	0	0	0	0	0	0	2
7	0	0	0	0	0	0	7
3	0	0	0	0	0	0	3
2	3	0	0	0	0	0	5
14	3	0	0	0	0	0	17
5	0	0	1	0	0	0	6
8	1	1	0	0	0	1	11
7	1	1	0	0	0	0	9
10	2	1	0	0	0	0	13
30	4	3	1	0	0	1	39
5	2	1	0	1	0	0	9
9	1	0	0	0	0	0	10
16	1	0	0	0	1	1	19
22	6	0	0	0	0	0	28
52	10	1	0	1	1	1	66
29	1	1	0	0	0	2	33
26	4	1	1	1	0	1	34
73	12	0	0	1	0	0	86
82	17	4	0	1	0	1	105
210	34	6	1	3	0	4	258
100	10	3	1	${ }^{2}$	0	0	116
70	12	2	2	1	1	2	90
94	17	1	1	1	2	3	119
71	16	2	2	2	0	1	94
335	55	8	6	6	3	6	419
86	13	2	0	1	3	1	106
58	20	2	0	2	2	0	84
53	11	2	0	1	0	0	67
62	18	4	2	4	2	0	92
259	62	10	2	8	7	1	349
88	14	5	1	4	1	0	113
103	14	4	4	3	1	-	129
65	16	8	1	3	1	0	94
69	19	5	5	2	3	0	103
325	63	22	11	12	6	0	439
59	16	5	1	1	0	0	82
78	13	6	1	1	0	0	99
64	24	1	3	2	2	0	96
73	19	5	1	1	0	1	100
274	72	17	6	5	2	1	377
65	17	1	3	1	0	1	88
82	12	4	6	1	0	0	105
64	24	1	1	3	0	0	93
65	23	9	4	2	1	0	104
276	76	15	14	7	1	1	390

Tracsis
 Traffic and Data Services

(Return To Dashboard
Return To Dash
Site 6 - Hole in The Wall Road / R809(ESE) / R809(S) / R139

12:15	12	4	0			0	16
12:30	14	3	0	0	0	0	17
12:45	27	1	3	0	0	0	31
1 Hr	74	17	3	0	0	0	94
13:00	23	5	0	0	0	0	28
13:15	23	2	0	0	0	0	25
13:30	16	2	1	0	0	0	19
13:45	18	1	0	0	0	0	19
1 Hr	80	10	1	0	0	0	91
14:00	16	4	0	0	0	0	20
14:15	26	5	0	0	0	0	31
14:30	22	5	0	0	0	0	27
14:45	17	3	1	0	0	0	21
1 Hr	81	17	1	0	0	0	99
15:00	32	2	0	0	0	0	34
15:15	18	2	0	0	1	0	21
15:30	30	7	0	0	1	0	38
15:45	20	1	0	0	0	0	21
1 Hr	100	12	0	0	2	0	14
16:00	24	0	1	0	0	0	25
16:15	22	4	0	0	0	0	26
16:30	18	1	0	0	0	0	21
16:45	20	0	0	0	0	0	20
1 Hr	84	5	1	0	0	0	92
17:00	35	5	0	0	0	0	40
17:15	22	1	0	0	0	0	23
17:30	22	7	0	0	0	1	30
17:45	30	3	0	0	0	,	33
1 Hr	109	16	0	0	0	1	26
18:00	34	0	0	0	0	0	34
18:15	24	4	0	0	0	0	28
18:30	24	1	0	0	0	0	25
18:45	23	2	0	0	0	0	25
1 Hr	105	7	0	0	0	,	12
19:00	23	0	0	0	0	0	23
19:15	15	2	0	0	0	0	17
19:30	23	0	0	0	0	0	23
19:45	28	0	0	0	0	0	28
1 Hr	89	2	0	0	0	0	91
20:00	16	0	0	0	0	0	16
20:15	24	1	0	0	0	0	25
20:30	15	0	0	0	0	0	15
20:45	19	0	0	0	0	0	22
1 Hr	74	1	0	0	0	0	78
21:00	18	0	0	0	0	0	18
21:15	21	1	0	0	0	0	22
21:30	10	0	0	0	0	0	10
21:45	19	2	0	0	0	O	21
1 Hr	68	3	0	0	0	0	71
22:00	12	0	0	0	0	0	12
22:15	11	0		0	0	0	11
22:30	3	0	0	0	0	0	3
22:45	1	0	0	0	0	0	
1 Hr	27	0	0	0	0	0	27
23:00	9	0	0	0	0	0	
23:15	5	0	0	0	0	0	
23:30	2	0	0		0	0	2
23:45	4	0	0	0	0	0	
1 Hr	20	0	0	0	0	0	20
Total	206	144	12	2	2	2	

Origin Arm C R809(S
Destination : Arm A Hole in the Wall Road

Destination: Arm B R809(ESE) $\int_{\text {Tntal }}$

2445	205	13	3	2	12	10	2690

Destination: Arm C R809(S)

5284	915	175	75	89	54	28	6620

Destination: Arm D R139
Total

(Return To Dashboard
Convert to PCU

4	0	0	0	0	0	0	
3	1	0	0	0	0	0	
6	0	0	0	0	0	0	
1	0	0	0			1	
14	1	0	0	0	0	1	16
3	2	0	0	0	0	0	5
1	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0		
4	2	0	0	0	0	0	6
1	0	0	0	0	0	0	1
1	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
2	0	0	0	0	0	0	
1	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
1	0	0	0	0	0	0	
1	0	0	0	0	0	0	
1	1	0	0	0	0	0	
3	0	0	0	0	0	0	
2	0	0	0	-	0	0	
7	1	0	0	0	0	0	
0	0	0	0	0	0	0	
4	0	0	0	0	0	1	
9	1	0	0	0	0	0	10
2	2	0	0	0	1	0	
15	3	0	0	0	1	1	20
7	2	0	0	0	0	0	
13	2	0	-	0	0	0	15
10	0	0	0	0	0	0	10
15	2	0	-	0	0	0	17
45	6	0	0	,	0	0	51
8	1	0	0	1	0	0	10
16	5	0	0	0	1	-	22
19	5	0	0	0	1	0	25
31	4	3	0	0	0	1	
74	15	3	0	1	2	1	96
34	7	0	0	1	0	1	43
51	9	1	0	1	0	2	64
47	8	0	-	1	0	1	57
49	5	1	0	1	1	1	58
181	29	2	0	4	1	5	222
59	5	${ }^{2}$	0	0	0	0	66
53	4	1	0	1	0	1	60
34	5	3	0	1	0	0	43
39	9	2	1	1	1	1	54
185	23	8	1	3	1	2	223
40	4	1	0	1	0	0	46
37	4	0		1	0	1	44
38	2	1	0	0	0	0	${ }^{41}$
15	2	1	0	1	0	0	19
130	12	3	1	3	0	1	150
38	9	1	0	0	0	0	48
38	5	3	0	2	1	-	49
29	3	1	0	0	0	0	33
52	4	0	0	1	0	0	57
157	21	5	0	3	1	0	187
55	6	2	0	1	0	,	64
57	5	1	0	0	0		

Car	LGV	OGV1	OGV2	PSV	MC		
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0		0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	,	0
0	0	0	0	0		0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	-	0	0
0	0	0	0	0	0	,	0
0	0	0	0	0	0	0	0
0	0	0		0	0	0	0
0	0	0	0	0	0	,	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	0
0	0	0	0	0	0	0	0
0	0	0	0		0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0		0	0	0	0	0	0
0	0	0	0	0	0		0
0	0	0	0	0	0		0

Car	LGV	OGV1	OGV2	PSV	MC	PC/	
15	1	0	0	0	0	0	16
9	1	0	0	0	0	0	10
10	2	0	0	0	0	0	12
5	0	0	0		0	0	5
39	4	0	0	0	0	0	43
9	0	0	0	0	0	0	9
3	0	0	0	0	0	0	3
2	1	0	0	0	0	0	3
2	1	0	0	0	0	0	3
16	2	0	0	0	0	0	18
4	0	0	0	0	0	0	4
1	0	1	0	0	0	0	2
5	1	0	0	0	0	0	6
4	1	0	0	0	0	0	5
14	2	1	0	0	0	0	17
4	1	0	0	0	0	0	5
0	0	0	0	0	0	0	0
3	1	0	0	0	0	0	4
2	1	0	0	0	0	0	
9	3	0	0	0	0	0	12
7	2	3	0	0	0	0	12
7	1	0	0	0	0	0	8
11	0	0	0	0	0	0	11
8	2	2	0	0	0	0	12
33	5	5	0	0	0	0	43
5	0	1	0	2	0	0	
10	2	0	0	0	0	1	13
18	3	0	0	0	0	0	21
27	2	0	0	1	0	0	30
60	7	1	0	3	0	1	72
24	2	0	1	3	1	0	31
40	7	0	1	1	0	0	49
49	9	2	1	4	0	0	65
50	17	1	2	1	2	1	74
163	35	3	5	9	3	1	219
76	9	5	0	1	1	0	92
63	14	0	0	4	1	1	83
74	7	0	1	1	0	0	83
68	11	0	1	4	1	0	85
281	41	5	2	10	3	1	343
74	13	1	0	1	1	0	90
76	6	1	0	2	0	0	85
81	8	1	0	0	0	0	90
101	3	6	0	0	0	0	110
332	30	9	0	3	1	0	375
99	7	3	0	0	0	0	109
88	10	3	0	0	0	0	101
56	7	4	0	0	1	0	68
67	10	3	0	0	0	,	80
310	34	13	0	0	1	0	358
54	10	1	1	2	0	0	68
55	9	0	0	0	0	0	64
62	6	4		,	0	0	73
64	10	5	1	,	1	0	81
235	35	10	2	3	1	0	286
57	10	5	0	1	0		73
70	7	1	0	1	1	0	80
62	10	2	2	0	0	0	76
61	5	3	2	1	0	1	73
250	32	11	4	3	1	1	302
77 68	9	5	0	0	0	0	${ }_{76}^{91}$

$\begin{array}{ll}10 \text { otal } & 3862 \\ \text { Origin Arm D R13 }\end{array}$
Destination: Arm A Hole in the Wall Road
Destination: Arm A Hole in the Wall Road
Car LGV OGV1 OGV2 pSV

2644	295	44	4	54	21	32	3094

Destination: Arm B R809(ESE)
Destinar Gal ogv1 OGV2 PSV MG
LGV OGV1 OGV2 PSV MC PC

0	0	0	0	0	0	0	
0	0	0	0	0	0	-	0
0	0		0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	-	0
0	0	-	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0		0	0	
0	0	0	0	0	0	-	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0		0	0	0
0	0	0	0		0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	,	0	0	0
0	0	0	0	0	0	0	
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0
0	0		0	0	0	0	0
0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0

Site 6-Hole in The Wall Road / R809(ESE) / R809(S) / R139

(Return To Dashboard

Destination: Arm B R809(ESE)
$\begin{array}{llllll}\text { Car } & \text { LGV OGV1 } & \text { OGV2 } & \text { PSV } & \text { MC } & \text { PC }\end{array}$
$\begin{array}{lllllllll}15 & 0 & 1 & 0 & 2 & 1 & 0 & 19\end{array}$

8935	1264	200	80	93	68	43	10683

11348	1055	164	32	123	59	69	12850

Destination : Arm C R809(S)
Car LGV OGV1 OGV2 PSV MC PC

1 Hr	390	48	8	0	6	2		
13:00	104	6	1	0	2	0	1	
13:15	117	12	1	1	2	1	0	
13:30	103	14	0	1	1	0	0	
13:45	99	6	1	0	2	0	1	
1 Hr	423	38	3	2	7	1	2	476
14:00	100	8	1	0	2	0	0	
14:15	121	11	3	0	3	0	1	
14:30	100	15	1	0	2	0	0	
14:45	121	11	0	0	2	0	0	
1 Hr	442	45	5	0	9	0	1	
15:00	127	6	3	0	0	1	0	
15:15	94	10	1	1	2	0	1	
15:30	174	14	2	0	3	0	1	
15:45	125	12	1	0	2	1	0	
1 Hr	520	42	7	1	7	2	2	
16:00	120	15		0	1	1	1	
16:15	131	10	4	0	2	1	0	
16:30	129	17	2	0	2	0	1	
16:45	131	6	1	0	1	2	0	
1 Hr	511	48	10	0	6	4	2	
17:00	133	9	0	1	2	0	2	
17:15	113	13	1	0	1	0	0	
17:30	121	8	0	0	2	2	0	
17:45	160	9	1	0	1	2	1	
1 Hr	527	39	2	1	6	4	3	
18:00	137	10	0	0	3	0	1	
18:15	148	8	0	0	2	2	1	
18:30	122	4	0	0	2	1	0	
18:45	137	9	1	0	3	0	0	
1 Hr	544	31	1	0	10	3	2	
19:00	145	9	0	0	2	0	0	
19:15	138	6	0	0	2	0	2	
19:30	18	9	1	1	0	0	2	
19:45	148	6	0	0	1	0	0	
1 Hr	539	30		1	5	0	4	
20:00	123	7	0	0	2	0	1	
20:15	97	9	2	0	1	0	2	
20:30	94	2	0	0	1	1	2	
20:45	80	2	0	0	2	0	0	
1 Hr	394	20	2	0	6	1	5	
21:00	97	5	1	0	1	0	0	
21:15	75	4	0	0	,	0	0	
21:30	62	2	0	0	1	0	2	
21:45	62	2	0	0	0	1	0	
1 Hr	296	13	1	0	3	1	2	
22:00	39	3	0	0	1	0	0	
22:15	51	2	0	0	2	0	1	
22:30	29	0	0	0	1	0	0	
22:45	32	0		0	0	0	0	
1 Hr	151	5	,	0	4	0	1	
23:00	25	I	1	0	2	0	0	
23:15	35	1	0	0	2	0	0	
23:30	19	2	0	0	0	0	0	
23:45	26	1	0	0	0	0	1	
1 Hr	105	5	1	0	4	0		

| Total | 7419 | 651 | 72 | 8 | 118 | 31 | 67 | 8366 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | DESTINATION SUMMARY

$00: 00$	20	0	0	0	0	0	0	20

[^17](Return To Dashboard
Return To Dash

13		0	0	0				
17	2	0	0	0	0	0		
10	0	1	0	0	0			
55	3	2		2	1	2		
12	2	0	0	0	0	0		
7	1	0	0	0	0	0		
3	0	0	0	0	0	0		
5	1	0	0	0	0	0		
27	4	0	0	0	0	0		
6	0	0	0	0	0	0		
3	0	0	0	0	0	0		
1	1	1	0	0	0	0		
0	2	0	0	0	0	0		
10	3	1	0	0	0	0		
2	1	0	0	0	0	0		
2	2	0	0	0	0	0		
1	0	1	0	0	0	0		
4	0	0	0	0	0	0		
9	3	1	0	0	0	0		
5	1	1	0	0	0	0		
5	2	0	0	0	0	0		
9	2	1	0	0	0	0		
6	3	0	0	0	0	0		
25	8	2	0	0	0	0		
10	2	0	0	0	0	1		
6	1	0	0	0	0	1		
22	3	0	2	0	0			
33	7	2	1	0	1	0		
71	13	2	3	0	1	3		
37	4	1	0	1	1	1		
59	5	1	0	1	1	2		
116	9	2	2	1	2		13	
114	10	0	1	0	0	0	12	
326	28	4	3	3	4	4	37	
53	25	3	1	1	0	0		
1	37	1	1	2	1	2	16	
140	35	1	1	2	4	2	18	
162	37	8	1	1	0	1	21	
476	134	13	4	6	5	5	64	
164	33	2	2	2	2	3	20	
187	30	4	1	2	1	4	22	
167	20	3	1	2		2	19	
178	27	3	1	1	2	2	21	
696	110	12	5	7	5	11	84	
140	27	4	2	0	0	0	17	
128	33	7	4	1	0	1	17	
91	25	7	2	1	0	0	12	
112	33	9	2	1	1	2	16	
471	118	27	10	3	1	3	63	
103	26	3	0	2	1	0	13	
117	26	4	2	3	0	1	15	
102	28	3	4	0		0	13	
96	22	8	1	1	1	1	13	
418	102	18	7	6	2	2	55	
108	50	5	4	1	0	0	16	
111	24	7	2	3	1	0	14	
104	21	13	6	0	0	0	14	
128	21	5	2	1	0	0	15	
451	116	30	14	5	1	0	61	
124	25	8	4	1	0	0	16	
158	22	9	2	1	1	2	19	
123	26	3	2	2	0	0	15	
154	28	7	2	0	1	2		

25	2	1	0	0	0	0	28
13	1	0	0	0	0	0	14
132	5	1	0	2	1	0	141
16	2	1	0	0	0	0	19
14	1	0	0	0	0	0	15
9	1	0	0	0	0	0	10
7	2	0	0	0	0	0	9
46	6	1	0	0	0	0	53
7	0	2	0	0	0	0	9
3	1	1	0	0	0	0	5
9	2	0	0	0	0	0	11
8	1	0	0	0	0	0	9
27	4	3	0	0	0	0	34
6	1	0	0	0	0	0	7
7	0	0	0	0	0	0	7
11	1	0	0	0	0	0	12
9	4	0	0	0	0	0	13
33	6	O	0	0	0	0	39
13	2	3	1	0	0	0	19
22	2	1	0	0	0	1	26
25	1	1	0	0	0	0	27
23	4	3	0	0	0	0	30
83	9	8	1	0	0	1	102
14	4	2	0	3	0	1	24
33	3	0	0	0	0	1	37
41	4	0	0	0	1	2	48
71	8	0	0	1	0	0	80
159	19	2	0	4	1	4	189
64	4	1	1	5	1	2	78
86	14	1	2	2	1	4	110
139	34	2	1	6	0	2	184
152	40	5	2	2	2	2	205
441	92	9	6	15	4	10	577
213	23	8	1	3	4	2	254
175	31	4	2	5	2	5	224
202	29	2	2	5	2	3	245
196	32	2	3	6	1	2	242
786	115	16	8	19	9	12	965
208	27	4	0	5	6	1	251
179	28	3	0	5	2	1	218
178	21	3	0	1	2	0	205
199	24	10	2	5	2	2	244
764	100	20	2	16	12	4	918
222	25	8	1	4	1	0	261
226	25	7	4	3	2	0	267
148	24	12	2	5	3	1	195
165	32	8	6	2	3	0	216
761	106	35	13	14	9	1	939
149	30	10	2	4	0	0	195
157	23	G	1	1	1	0	189
158	31	7	3	4	2	0	205
165	30	11	2	1	1	1	211
629	114	34	8	10	4	1	800
153	33	7	4	3	0	3	203
169	22	5	6	2	1	2	207
154	37	5	3	4	0	0	203
156	34	13	6	3	1	1	214
632	126	30	19	12	2	6	827
180	28	10	2	1	1	0	222
155	21	6	1	1	1	1	186
152	21	10	1	4	2	2	192
139	24	6	2	1	3	1	176
626	94	32	6	7	7	4	776

9028	1303	234	81	86	66	77	10875

10981	941	150	27	114	43	42	12298

12458	1636	303	110	203	97	68	14875

Appendix 14.1

Summary of Relevant Legislation Archaeology

Summary of Relevant Legislation

National Monuments (Amendment) Act (1930-2014)

All archaeological sites have the full protection of the national monuments legislation (Principal Act 1930; Amendments 1954, 1987, 1994, 2004 and 2014). In the 1987 Amendment of Section 2 of the Principal Act (1930), the definition of a national monument is specified as:
any artificial or partly artificial building, structure or erection or group of such buildings, structures or erections;
any artificial cave, stone or natural product, whether forming part of the ground, that has been artificially carved, sculptured or worked upon or which (where it does not form part of the place where it is) appears to have been purposely put or arranged in position;
any, or any part of any, prehistoric or ancient tomb, grave or burial deposit, or
(ii) ritual, industrial or habitation site
and
any place comprising the remains or traces of any such building, structure or erection, any cave, stone or natural product or any such tomb, grave, burial deposit or ritual, industrial or habitation site...

Under Section 14 of the Principal Act (1930):
It shall be unlawful...
to demolish or remove wholly or in part or to disfigure, deface, alter, or in any manner injure or interfere with any such national monument without or otherwise than in accordance with the consent hereinafter mentioned (a licence issued by the Office of Public Works National Monuments Branch),
or
to excavate, dig, plough or otherwise disturb the ground within, around, or in the proximity to any such national monument without or otherwise than in accordance...

Under Amendment to Section 23 of the Principal Act (1930),
A person who finds an archaeological object shall, within four days after the finding, make a report of it to a member of the Garda Síochána...or the Director of the National Museum...

The latter is of relevance to any finds made during a watching brief.
In the 1994 Amendment of Section 12 of the Principal Act (1930), all the sites and 'places' recorded by the Sites and Monuments Record of the Office of Public Works are provided with a new status in law. This new status provides a level of protection to the listed sites that is equivalent to that accorded to 'registered' sites [Section 8(1), National Monuments Amendment Act 1954] as follows.

The Commissioners shall establish and maintain a record of monuments and places where they believe there are monuments and the record shall be comprised of a list of monuments and such places and a map or maps showing each monument and such place in respect of each county in the State.

The Commissioners shall cause to be exhibited in a prescribed manner in each county the list and map or maps of the county drawn up and publish in a prescribed manner information about when and where the lists and maps may be consulted.

In addition, when the owner or occupier (not being the Commissioners) of a monument or place which has been recorded, or any person proposes to carry out, or to cause or permit the carrying out of, any work at or in relation to such monument or place, he shall give notice in writing of his proposal to carry out the work to the Commissioners and shall not, except in the case of urgent necessity and with the consent of the Commissioners, commence the work for a period of two months after having given the notice.

Under the National Monuments Amendment Act (2004), the Minister of Environment, Heritage and Local Government will issue directions relating to archaeological works and will be advised by the National Monuments Section and the National Museum of Ireland. The Act sets out the circumstances whereby the Minister of Environment, Heritage and Local Government may grant consent (i.e. In respect of a national monument of which the Minister or a local authority are the owners or the guardians or in respect of which a preservation order is in force) or issue directions (i.e. in relation to approved road developments-being road development approved under either or both sections 49 and 51 of the Roads Act 1993).

14A. (1) The consent of the Minister under section 14 of this Act and any further consent or licence under any other provision of the National Monuments Acts 1930 to 2004 shall not be required where the works involved are connected with an approved road development.

14A. (2) Any works of an archaeological nature that are carried out in respect of an approved road development shall be carried out in accordance with the directions of the Minister, which directions shall be issued following consultation by the minister with the Director of the National Museum of Ireland.

14A (4) Where a national monument has been discovered to which subsection (3) of this section relates, then the road authority carrying out the road development shall report the discovery to the Minister subject to subsection (7) of this section, and pending any directions by the minister under paragraph (d) of this subsection, no works which would interfere with the monument shall be carried out, except works urgently required to secure its preservation carried out in accordance with such measures as may be specified by the Minister.

The Minister will consult with the Director of the National Museum of Ireland for a period not longer than 14 days before issuing further directions in relation to the national monument.

The Minister will not be restricted to archaeological considerations alone, but will also consider the wider public interest.

Architectural Heritage (National Inventory) and Historic Monuments (Miscellaneous Provisions) Act, 1999

This Act provides for the establishment of a national inventory of architectural heritage and historic monuments.

Section 1 of the act defines "architectural heritage" as:-
(a) all structures and buildings together with their settings and attendant grounds, fixtures and fittings,
(b) groups of such structures and buildings, and,
(c) sites
which are of architectural, historical, archaeological, artistic, cultural, scientific, social or technical interest.

Section 2 of the Act states that the Minister (for Arts, Heritage, Gaeltacht and the Islands) shall establish the NIAH, determining its form and content, defining the categories of architectural heritage, and specifying to which category each entry belongs. The information contained within the inventory will be made available to planning authorities, having regard to the security and privacy of both property and persons involved.

Section 3 of the Act states that the minister may appoint officers, who may in turn request access to premises listed in the inventory from the occupiers of these buildings. The officer is required to inform the occupier of the building why entry is necessary, and in the event of a refusal, can apply for a warrant to enter the premises.

Section 4 of the Act states that obstruction of an officer or a refusal to comply with requirements of entry will result in the owner or occupier being guilty of an offence.

Section 5 of the Act states that sanitary authorities who carry out works on a monument covered by this Act will as far as possible preserve the monument with the proviso that its condition is not a danger to any person or property, and that the sanitation authority will inform the Minister that the works have been carried out.

The provisions in the Act are in addition to and not a substitution for provisions of the National Monument Act (1930-94), and the protection of monuments in the National Monuments Act is extended to the monuments covered by the Architectural Heritage (National Inventory) and Historic Monuments (Miscellaneous Provisions) Act (1999).

Architectural Heritage (National Inventory) and Historic Monuments (Miscellaneous Provisions) Act, 2000 and the Local Government (Planning and Development) Act 2000

The Architectural Heritage (National Inventory) and Historic Monuments (Miscellaneous Provisions) Act provides for the establishment of a national inventory of architectural heritage and historic monuments.

Section 1 of the act defines "architectural heritage" as:
(a) all structures and buildings together with their settings and attendant grounds, fixtures and fittings,
(b) groups of such structures and buildings, and,
(c) sites, which are of architectural, historical, archaeological, artistic, cultural, scientific, social or technical interest.

The Local Government (Planning and Development) Act, 1999, which came into force on 1st January 2000, provides for the inclusion of protected structures into the planning authorities' development plans and sets out statutory regulations regarding works affecting such structures, thereby giving greater statutory protection to buildings. All structures listed in the development plan are now referred to as Protected Structures and enjoy equal statutory protection. Under the 1999 Act the entire structure is protected, including a structures interior, exterior, the land lying within the curtilage of the protected structure and other structures within that curtilage. This Act was subsequently repealed and replaced by the Planning and Development Act, 2000, where the conditions relating to the protection of architectural heritage are set out in Part IV of the Act.

The main features of the 2000 Act are:
a) planning authorities have a clear obligation to create a record of protected structures (RPS) which includes all structures or parts of structures in their functional areas which, in their opinion, are of special architectural, historical, archaeological, artistic, cultural, scientific, social or technical interest. This record forms part of a planning authority's development plan.
b) planning authorities are also obliged to preserve the character of places and townscapes which are of special architectural, historic, archaeological, artistic, cultural, scientific, social or technical interest or that contribute to the appreciation of protected structures, by designating them architectural conservation areas (ACAs) in their development plan.
c) development plans must include objectives for the protection of such structures and the preservation of the character of such areas to ensure proper and sustainable planning and development.
d) new responsibilities are given to the owners and occupiers of protected structures to maintain them and planning authorities have additional powers to ensure that buildings are not endangered either directly or through neglect. 5 Financial assistance, in the form of conservation grants, is available from planning authorities to assist in this process.
e) the owner or occupier of a protected structure may seek a declaration from the relevant planning authority to determine the works to the structure that would materially affect its character and therefore require planning permission, and those works which may be carried out as exempted development.
f) where a structure is protected, the protection includes the structure, its interior and the land within its curtilage and other structures within that curtilage (including their interiors) and all fixtures and features which form part of the interior or exterior of all these structures. All works which would materially affect the character of a protected structure, or a proposed protected structure, will require planning permission.

Appendix 14.2

Glossary of Impact Assessment Archaeology

Glossary of Impact Assessment

Significance Criteria (NRA Guidelines 2006)

The significance criteria can be used to evaluate the significance of an archaeological site, monument or complex. It should not, however, be regarded as definitive, rather it is an indicator which wider judgment based on the individual circumstances of a feature. Different archaeological heritage asset types contributes to a lend themselves more easily to assessment and it should be borne in mind that this can create a bias in the record, for example an upstanding stone monument such as a fortified house is easier to examine with a view to significance than a degraded enclosure site.

Table 2: Significance Criteria, NRA Guidelines 2006 (Archaeological Heritage)

Criteria	Explanation
Existing Status	The level of protection associated with an archaeological site / monument is an important consideration.
Condition /Preservation	The survival of a monument's archaeological potential both above and below ground is an important consideration and should be assessed in relation to its present condition and surviving features. Well-preserved sites should be highighted, this assessment can only be based on a field inspection.
Documentation /Historical Significance	The significance of a monument may be enhanced by the existence of records of previous investigations or contemporary documentation supported by written evidence or historic maps. Sites with a definite historical association or an example of a notable event or person should be highlighted.
Group Value	The value of a single monument may be greatly enhanced by its association with related contemporary monuments or with monuments from different periods indicating an extended time presence in any specific area. In some cases it may be preferable to protect the complete group, including associated and adjacent land, rather than to protect isolated monuments within that group.
Rarity Vulnerability	The rarity of some monument types can be a central factor affecting response strategies for development, whatever the condition of the individual feature. It is important to recognise sites that have a limited distribution. erosion, natural degradation, agricultural activity, land clearance, neglect, careless treatment or development. The nature of the archaeological evidence cannot always be specified precisely but it may still be possible to document reasons to justify the significance of the feature. This category relates to the probability of
Visibility in the Landscape	Monuments that are highly visible in the landscape have a heightened physical presence. The inter-visibility between monuments may also be explored in this category.

	monuments producing material of archaeological significance as a result of future investigative work.
Amenity Value	Regard should be taken of the existing and potential amenity value of a monument.

Determining Significance of Architectural Heritage Assets

The significance of perceived impact on structures and sites of architectural merit is determined by a combination of the architectural heritage importance of the structure and the degree of impact. In each case the structure is given a rating as to its importance and, if higher than "Record only", the nature of its special interest is given. The rating definitions are in accordance with those given by the National Inventory of Architectural Heritage (NIAH):

- International: Structures or sites of sufficient architectural heritage importance to be considered in an international context. Examples include St Fin Barre's Cathedral, Cork. These are exceptional structures that can be compared to and contrasted with the finest architectural heritage in other countries.
- National: Structures or sites that make a significant contribution to the architectural heritage of Ireland. These are structures and sites that are considered to be of great architectural heritage significance in an Irish context. Examples include Ardnacrusha Power Station, Co. Clare; the Ford Factory, Cork; Carroll's Factory, Dundalk; Lismore Castle, Co. Waterford; Sligo Courthouse, Sligo; and Emo Court, Co. Laois.
- Regional: Structures or sites that make a significant contribution to the architectural heritage within their region or area. They also stand in comparison with similar structures or sites in other regions or areas within Ireland. Examples would include many Georgian terraces; Nenagh Courthouse, Co. Tipperary; or the Bailey Lighthouse, Howth. Increasingly, structures that need to be protected include structures or sites that make a significant contribution to the architectural heritage within their own locality. Examples of these would include modest terraces and timber shop fronts.
- Local: These are structures or sites of some vintage that make a contribution to the architectural heritage but may not merit being placed in the RPS separately. Such structures may have lost much of their original fabric.
- Record only: These are structures or sites that are not deemed to have sufficient presence or inherent architectural or other importance at the time of recording to warrant a higher rating. It is acknowledged, however, that they might be considered further at a future time.

Where the rating is deemed to be higher than "Record only" the category of special interest is noted. It should be noted that the term "special architectural interest" applies only in the context of this assessment of architectural heritage and does not imply that those buildings and other structures that are not considered to be of special architectural interest are in any way inferior or are of lower value.

The special interest is based on the categories set down in the Planning and Development Act, 2000. While that Act gives no criteria for assigning a special interest to a structure, the

National Inventory of Architectural Heritage (NIAH) offers guidelines to its field-workers. This offers guidance by example rather than by definition, and is the system adopted for the present assessment. There are eight categories set down in the Act, viz. archaeological, architectural, historical, technical, cultural, scientific, social and artistic, and the NIAH guidance for each is as follows:

Archaeological

It is to be noted that the NIAH is biased towards post-1700 structures. Structures that have archaeological features may be recorded, providing the archaeological features are incorporated within post-1700 elements. Industrial fabric is considered to have technical significance, and should only be attributed archaeological significance if the structure has pre1700 features.

Architectural

A structure may be considered of special architectural interest under the following criteria:-

- An aspiration of aesthetic appeal to its design.
- Good quality or well executed architectural design
- The work of a known and distinguished architect, engineer, designer, craftsman
- Modest or vernacular structures may be considered to be of architectural interest, as they are part of the history of the built heritage of Ireland.
- Well-designed decorative features, externally and/or internally.

Historical

A structure may be considered of special historical interest under the following criteria:

- A significant historical event associated with the structure
- An association with a significant historical figure
- Has a known interesting and/or unusual change of use, e.g. a former workhouse now in use as a hotel
- A memorial to a historical event.

Technical

A structure may be considered of special technical interest under the following criteria:

- Incorporates building materials of particular interest, i.e. the materials or the technology used for construction
- Incorporates innovative engineering design, e.g. bridges, canals or mill weirs
- A structure which has an architectural interest may also merit a technical interest due to the structural techniques used in its construction, e.g. a curvilinear glasshouse, early use of concrete, cast-iron prefabrication.
- Mechanical fixtures relating to a structure may be considered of technical significance.

Cultural

A structure may be considered of special cultural interest where there is an association with a known fictitious character or event, e.g., Sandycove Martello Tower which featured in Ulysses.

Scientific

A structure may be considered of special scientific interest where it is considered to be an extraordinary or pioneering scientific or technical achievement in the Irish context, e.g., Mizen Head Bridge, Birr Telescope.

Social

A structure may be considered of special social interest under the following criteria:

- A focal point of spiritual, political, national or other cultural sentiment to a group of people, e.g. a place of worship, a meeting point, assembly rooms.
- Developed or constructed by a community or organisation, e.g. the construction of the railways or the building of a church through the patronage of the local community
- Illustrates a particular lifestyle, philosophy, or social condition of the past, e.g. the hierarchical accommodation in a country house, philanthropic housing, vernacular structures.

Artistic

A structure may be considered of special artistic interest under the following criteria:

- Work of a skilled craftsman or artist, e.g. plasterwork, wrought-iron work, carved elements or details, stained glass, stations of the cross.
- Well-designed mass produced structures or elements may also be considered of artistic interest.
- In the evaluation of the special interest of a structure it is possible for the structure to have a special interest under more than one of the above categories.

Assessment of Material Assets, as Defined by the EPA (2002)

Context Describe the location and extent of the asset. Does it extend beyond the site boundary?

Character Describe the nature and use of the asset. It is exploited, used or accessible? Is it renewable or non-renewable and if so, over what period?

Significance Describe the significance of the asset. Is the material asset unique, scarce or common in the region? Is its use controlled by known plans, priorities or policies? What trends are evident or may reasonably be inferred?

Sensitivity Describe the changes in the existing environment which could limit the access to, or the use of, the material asset.

Glossary of Impacts as defined by the NRA Guidelines 2006, with reference to the EPA (2002 \& 2017)

Impacts are generally categorised as either being a direct impact, an indirect impact or as having no predicted impact. A glossary of impacts as defined by the EPA are as follows: -

- A direct impact occurs when a cultural heritage asset is located within the proposed development area and entails the removal of part, or the entire asset.
- Indirect impacts may be caused due to the close proximity of a development to a cultural heritage asset. Mitigation strategies and knowledge of detail design can often ameliorate any adverse indirect impact. Indirect impacts may include severance of linked features, degradation of setting and amenity or provide a visual intrusion.
- No predicted impact occurs when the proposed development does not adversely or positively affect a cultural heritage asset.

The impacts of the proposed scheme on the cultural heritage environment are first assessed in terms of their quality i.e. positive, negative, neutral (or direct and indirect):

Negative Impact A change that will detract from or permanently remove a cultural heritage asset from the landscape.

Neutral Impact A change that does not affect the cultural heritage asset.
Positive Impact A change that improves or enhances the setting of a cultural heritage asset.

Duration of Impacts:

Temporary Impact Impact lasting for one year or less.
Short-term Impacts Impact lasting one to seven years.
Medium-term Impact Impact lasting seven to fifteen years.
Long-term Impact Impact lasting fifteen to sixty years.
Permanent Impact Impact lasting over sixty years.

Types of Impacts:

Cumulative Impact significant, impact.

Do Nothing Impact The environment as it would be in the future should no development of any kind be carried out.

Indeterminable Impact
When the full consequences of a change in the environment cannot be described.

Irreversible Impact When the character, distinctiveness, diversity or reproductive capacity of an environment is permanently lost.

Residual Impact The degree of environmental change that will occur after the proposed mitigation measures have taken effect.
'Worst case' Impact The impacts arising from a development in the case where mitigation measures substantially fail.

Magnitude of Impact

Extent - size, scale and spatial distributions of the effect

Duration - period of time over which the effect will occur

Frequency - how often the effect will occur
Context - how will the extent, duration and frequency contrast with the accepted baseline conditions.

Table 3: Magnitude Criteria

Magnitude of Impact	Criteria
Very High	Applies where mitigation would be unlikely to remove adverse effects. Reserved for adverse, negative effects only. These effects arise where a cultural heritage asset is completely and irreversibly destroyed by a proposed development.
High	An impact which, by its magnitude, duration or intensity alters an important aspect of the environment. An impact like this would be where part of a cultural heritage asset would be permanently impacted upon leading to a loss of character, integrity and data about the archaeological / cultural heritage feature/site.
Medium	A moderate direct impact arises where a change to the site is proposed which though noticeable is not such that the archaeological / cultural heritage integrity of the site is compromised and which is reversible. This arises where an archaeological / cultural heritage feature can be incorporated into a modern day development without damage and that all procedures used to facilitate this are reversible.
Low	An impact which causes changes in the character of the environment which are not significant or profound and do not directly impact or affect an archaeological / cultural heritage feature, site or monument.

Magnitude of Impact	Criteria
Negligible	An impact capable of measurement but without noticeable consequences.
No change	No change to the asset or setting

Sensitivity Criteria

An evaluation of the sensitivity / value of sites and features is based on the extent to which assets contribute to the archaeological or built heritage character, though their individual or group qualities, either directly or potentially and guided by legislation, national policies, acknowledged standards, designations and criteria. The table below presents the scale of sensitivity / value together with criteria.

Table 4: Sensitivity Criteria

Sensitivity / Value	Criteria
Very High	Sites of international significance: World Heritage Sites National Monuments Protected Structures of international and national importance Designed landscapes and gardens of national importance Assets of acknowledged international importance or that can contribute significantly to international and national research objectives
High	RMP / SMR sites Designated assets that contribute to regional research objectives Protected Structures of regional importance Architectural Conservation Areas
Medium	Recently / newly identified archaeological sites (not yet included on the SMR / RMP; the importance of the resource has yet to be fully ascertained) Undesignated assets that contribute to regional research objectives NIAH Building Survey and Garden Survey Sites

Sensitivity / Value	Criteria
Low	Undesignated Sites of local importance (e.g. townland / field boundaries) Assets compromised by poor preservation and/or poor survival of contextual associations Assets of limited value but with the potential to contribute to local research objectives (e.g. potential buried foundations associated with features / structures shown the 1 st edition OS six-inch mapping) Historic townscapes or built up areas of limited historic integrity in their building or their settings
Negligible	Assets with very little or no surviving archaeological interest. Buildings of no architectural or historic note
Unknown	The nature of the resource has yet to be fully ascertained, e.g. sites or areas of specific archaeological potential, greenfield areas or riverine / stream / coastal environs with inherent archaeological potential. Structures with potential historic significance (possibly hidden or inaccessible).

Criteria for Assessment of Impact Significance

Using both the sensitivity of the heritage asset and the magnitude of impact, the impact significance is established (Table 6).

The Draft EPA Revised Guidelines on Information to be contained within an EIS (September 2015) has also added the following levels of significance of effect (as per figure below):

Table 5 - Significance of Effects (EPA draft 2015)

Significance of Effect	Description
Very Significant	An impact which by its character, magnitude, duration or intensity significantly alters the majority of a sensitive aspect of the environment, for example in this case a monument
Not Significant	An effect which causes noticeable changes in the character of the environment but without noticeable consequences.

Source: Draft EPA Revised Guidelines on Information to be contained within Environmental Impact Assessment Reports (August 2017), p. 53

[^0]: | Cobbles, $\%$ | 0 |
 | ---: | :---: |
 | Gravel, $\%$ | 3 |
 | Sand, $\%$ | 72 |
 | Clay / Silt, \% | 25 |

[^1]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 18/08/2016 17:50:34
 17:50:23 18/08/2016

[^2]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 18/08/2016 17:50:34
 17:50:23 18/08/2016

[^3]: ${ }^{1}$ Applies to Solid samples only. DRY indicates samples have been dried at $35^{\circ} \mathrm{C}$. NA = not applicable.

[^4]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 22/03/2016 16:42:48
 16:42:43 22/03/2016

[^5]: ${ }^{1}$ Applies to Solid samples only. DRY indicates samples have been dried at $35^{\circ} \mathrm{C}$. NA = not applicable.

[^6]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 04/05/2016 15:50:15
 15:50:08 04/05/2016

[^7]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 04/05/2016 15:50:15
 15:50:08 04/05/2016

[^8]: ${ }^{1}$ Applies to Solid samples only. DRY indicates samples have been dried at $35^{\circ} \mathrm{C}$. NA = not applicable.

[^9]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 09/07/2016 10:58:03
 10:57:58 09/07/2016

[^10]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 09/07/2016 10:58:03
 10:57:58 09/07/2016

[^11]: ${ }^{1}$ Applies to Solid samples only. DRY indicates samples have been dried at $35^{\circ} \mathrm{C}$. NA = not applicable.

[^12]: | Cobbles, \% | 0 |
 | ---: | :---: |
 | Gravel, \% | 36 |
 | Sand, \% | 29 |
 | Clay / Silt, \% | 35 |

[^13]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 09/07/2016 10:57:22
 10:57:16 09/07/2016

[^14]: Solid Results are expressed on a dry weight basis, after correction for moisture content where applicable
 Stated limits are for guidance only and ALcontrol cannot be held responsible for any discrepancies with current legislation
 Mcerts Certification does not apply to leachates
 09/07/2016 10:57:22
 10:57:16 09/07/2016

[^15]: ${ }^{1}$ Applies to Solid samples only. DRY indicates samples have been dried at $35^{\circ} \mathrm{C}$. $\mathrm{NA}=$ not applicable.

[^16]: әпиәл \forall хеед

[^17]: $\begin{array}{llllllll}25 & 4 & 0 & 0 & 1 & 0 & 0 & 30\end{array}$

